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Abstract. First, the essence of a physical theory for a multilevel system is through
coupling different physical laws in different levels by a symmetry-breaking principle,
rather than through a unification using larger symmetry. In astrophysical dynamics,
the symmetry-breaking mechanism and the coupling are achieved by prescribing the
coordinate system so that the laws of fluid dynamics and heat conductivity are coupled
with gravitational field equations. Another important ingredient in modeling fluid
motion in astrophysics is to use the momentum density field to replace the velocity
field as the state function of cosmic objects. Second, by applying the new symmetry-
breaking mechanism and the new coupled astrophysical dynamics model, we rigor-
ously prove a basic theorem on blackholes: Assume the validity of the Einstein theory
of general relativity, then black holes are closed, innate and incompressible. Third, we
prove a theorem on structure of universes. Assume the Einstein theory of general rel-
ativity, and the principle of cosmological principle that the universe is homogeneous
and isotropic. Then we show that 1) all universes are bounded, are not originated from
a Big-Bang, and are static; and 2) The topological structure of our Universe can only
be the 3D sphere. Also, thanks to the basic properties of blackholes, we show that
our results on our Universe resolve such fundamental problems as dark matter and
dark energy, redshifts and CMB. Fourth, we discovered that both supernovae explo-
sion and AGN jets, as well as many astronomical phenomena, are due to combined
relativistic, magnetic and thermal effects. The radial temperature gradient causes ver-
tical Bénard convection cells, and the relativistic viscous force (via electromagnetic, the
weak and the strong interactions) gives rise to an huge explosive radial force near the
Schwarzschild radius, leading e.g. to supernovae explosion and AGN jets.
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1 Introduction

The goal of this article is to examine fundamental issues in astrophysics and cosmology,

based on Einstein theory of general relativity and the cosmological principle, leading to

new theories on astrophysical dynamics and cosmology as outlined below.

Black holes

One main objective of this paper is to study the nature of black holes and the struc-

ture and formation of our Universe. The concept of black holes was originated by the

Schwarzschild solution of the Einstein gravitational field equations, in an exterior of a

central symmetric matter field:

ds2 =−
(

1− Rs

r

)
c2dt2+

(
1− Rs

r

)−1

dr2+r2dθ2+r2sin2 θdϕ2, (1.1)

where

Rs =
2MG

c2
(1.2)

is the Schwarzschild radius. Here M is the mass of the matter in the centrally symmetric

ball of radius R. It is well-known that when R≤Rs, the spherical 3D ball BRs is a black

hole.

One main result we establish rigorously in this article is to show that

black holes are closed.

Namely, no energy can cross either side of the black hole surface SRs = {x ∈R3 | |x|=
Rs}. It is classical to know that no particles can escape from a black hole when they are

in the Schwarzschild radius. Then in the exterior of a black hole, we have the energy-

momentum conservation:
∂E

∂τ
+ div P=0, (1.3)

where τ is the proper time, E and P are the energy and momentum densities. Then by

(1.3), together with the fact that no matter can escape from inside of the black hole, we

can easily show that

lim
r→R+

s

Pr =0,

which implies that black holes are closed: no energy can penetrate the Schwarzschild

surface. Here Pr is the radial component of the momentum density P.

The second main result on black holes we prove in this article is that

black holes are innate.

Namely, no new black holes can be generated from a massive object through a cosmic

process. In particular, we show in this article that black holes can not be created by
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supernovae explosions. In other words, black holes can neither be created nor be annihi-

lated, and the total number of black holes in the Universe is conserved. This results leads

to a new theory on the origin of stars and galaxies.

Matter in a black hole will not be attracted to its center, forming a singularity. In fact,

a black hole is filled with the matter in the interior.

It is worth to remark that the classical view on black holes is that a black hole is a

huge attracting “sink” that matters can not come out from inside the black hole, but can

be attracted into it, causing the growth of the black radius and cosmic instability. The

results that we proved on black holes show that a black hole is incompressible and non-

expanding: matters can neither come in or out of it. Black hole is closed body, and is

either a 3D open ball or a 3D sphere with Schwarzschild radius determined by the mass.

The Universe

Modern cosmology adopts the view that our Universe is formed through the Big-

Bang or Big-Bounce; see among others [1, 2, 7, 8]. One main objective of this article is

to rigorously derive a new theory on the geometrical and topological structure and the

nature of our Universe, based mainly on fundamental principles of general relativity.

Our general observation is that based on the blackhole theorem, Theorem 4.1, our

Universe can only be a closed spherical Universe without boundary S3. We proceed as

follows.

Let E and M be the total energy and mass of the Universe:

E=kinetic+electromagnetic+thermal+Ψ, M=E/c2, (1.4)

where Ψ is the energy of all interaction fields. The total mass M dictates the Schwarzschild

radius Rs.

If our Universe were born to the Big-Bang, assuming at the initial stage, all energy is

concentrated in a ball with radius R0 <Rs, by the theory of black holes, then the energy

contained BR0
must generate a black hole in R3 with fixed radius Rs as defined by (1.2).

Assume at certain stage, the Universe were contained in ball of a radius R with R0<

R<Rs, then we can prove that the Universe must contain a sub-black hole with radius r

given by

r=

√
R

Rs
R.

Based on this property, the expansion of the Universe, with increasing R to Rs, will give

rise to an infinite sequence of black holes with one embedded to another. Apparently,

this scenario is clearly against the observations of our Universe, and demonstrates the

following:

Our Universe cannot be originated from a Big-Bang.

Also, according to the basic cosmological principle that the universe is homogeneous

and isotropic in three-dimensional space [8], given the energy density ρ0 > 0 of the uni-

verse, based on the Schwarzschild radius, the universe will always be bounded in black
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hole, which is an open ball of radius:

Rs =

√
3c2

8πGρ0
.

This shows immediately the following conclusion:

There is no unbounded universe.

We have shown that a black hole is unable to expand and shrink. We arrive immedi-

ately from the above analysis the following conclusion:

Our Universe must be static, and not expanding.

Notice that the isotropy requirement in the cosmological principle excludes the glob-

ular open universe scenario. Consequently, we have shown that

our Universe must be a closed 3D sphere S3.

Redshift problem. Then the natural and important question one has to answer is the

consistency with astronomical observations, including the cosmic edge, the flatness, the

horizon, the redshift, and the cosmic microwave background (CMB) problems. These

problems can now be easily understood based on the structure of the Universe and the

blackhole theorem we derived. Hereafter we focus only on the redshift and the CMB

problems.

The most fundamental problem is the redshift problem. Observations clearly show

that light coming from a remote galaxy is redshifted, and the farther away the galaxy is,

the larger the redshift. In modern astronomy and cosmology, it is customary to charac-

terize the redshift by a dimensionless quantity z in the formula

1+z=
λobserv

λemit
, (1.5)

where λobserv and λemit represent the observed and emitting wavelenths.

There are three sources of redshifts: the Doppler effect, the cosmological redshift,

and the gravitational redshift. If the Universe is not considered as a black hole, then the

gravitational redshift and the cosmological redshift are both too small to be significant.

Hence, modern astronomers have to think that the large port of the redshift is due to the

Doppler effect.

However, due to black hole properties of our Universe, the black hole and cosmolog-

ical redshifts cannot be ignored. Due to the horizon of the sphere, for an arbitrary point

in the spherical Universe, its opposite hemisphere relative to the point is regarded as a
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black hole. Hence, g00 can be approximatively taken as the Schwarzschild solution for

distant objects as follows

−g00(r)=α(r)

(
1− Rs

r̃

)
, α(0)=2, α(Rs)=1, α′(r)<0,

where r̃=2Rs−r for 0≤ r<Rs is the distance from the light source to the opposite radial

point, and r is the distance from the light source to the point. We derive then the following

redshift formula, which is consistent with the observed redshifts:

1+z=
1√

α(r)(1− Rs
r̃ )

=

√
2Rs−r√

α(r)(Rs−r)
for 0< r<Rs. (1.6)

CMB problem. In 1965, two physicists A. Penzias and R. Wilson discovered the low-

temperature cosmic microwave background (CMB) radiation, which fills the Universe,

and it has been regarded as the smoking gun for the Big-Bang theory. However, for the

unique scenario of our Universe we derived, it is the most natural thing that there exists

a CMB, because the Universe has always been there as a black-body and CMB is a result

of blackbody equilibrium radiation.

Dark matter and dark energy. In view of the geometric structure of our Universe we

derived, the observable cosmic mass M and the total mass Mtotal, including both M and

the non-observable mass caused by space curvature energy, enjoy the following relation:

Mtotal=

{
3πM/2 for the spherical universe,

3πM/4 for the globular universe.
(1.7)

The difference Mtotal−M can be regarded as the dark matter. Astronomical observations

have shown that the measurable mass M is about one fifth of total mass Mtotal, which

appears to be in better agreement with the spherical universe case, and supports that our

Universe is a closed 3D sphere.

Also, the static Universe has to possess a negative pressure to balance the gravita-

tional attracting force. The negative pressure is actually the effect of the gravitational

repelling force, attributed to dark energy.

Equivalently, the above interpretation of dark matter and dark energy is consistent

with the theory based on the new gravitational field equations developed by the authors

[5]:

Rµν−
1

2
gµνR=−8πG

c4
Tµν−

1

2

(
∇µΨν+∇νΨµ

)
, (1.8)

based on 1) the Einstein principle of general relativity, 2) the principle of interaction dy-

namics (PID), which is the direct consequence of the presence of the dark energy and

dark matter. It is clear now that gravity can display both attractive and repulsive effect,
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caused by the duality between the attracting gravitational field {gµν} and the repulsive

dual vector field {Φµ}, together with their nonlinear interactions governed by the field

equations. Consequently, dark energy and dark matter phenomena are simply a property

of gravity.

Symmetry-breaking principle

We know that different physical systems obey different physical principles. One com-

mon view of modeling a multilevel large system is through unification based on larger

symmetry. We believe, however, that the essence of a physical theory for such a multilevel

system is through coupling different physical laws in different levels by a symmetry-

breaking principle. In other words, symmetry-breaking is a general principle when we

deal with a physical system coupling different subsystems in different levels. This prin-

ciple consists of two aspects as follows:

• The three sets of symmetries — the general relativistic invariance, the Lorentz and

the gauge invariances, and the Galileo invariance — are mutually independent and

dictate in part the physical laws in different levels of the physical world.

• For a system coupling different levels of physical laws, part of these symmetries

must be broken.

In astrophysics, we encounter a difficulty that the Newtonian Second Law for fluid

motion and the diffusion law for heat conduction are Galilean invariant, and are not com-

patible with the principle of general relativity. There are no basic principles and rules for

combining relativistic systems and the Galilean systems together to form a consistent

system. The reason is that in a Galilean system, time and space are independent, and

physical fields are 3-dimensional; while in a relativistic system, time and space are re-

lated, and physical fields are 4-dimensional. The symmetry-breaking mechanism and

the coupling in this case are achieved by prescribing the coordinate system

xµ=(x0,x), x0= ct and x=(x1,x2,x3),

such that the metric is in the form:

ds2 =−g00c2dt2+gij(x,t)dxidxj. (1.9)

Here gij (1 ≤ i, j ≤ 3) are the spatial metric. Then the laws of fluid dynamics and heat

conductivity will be established on the 3D space manifold with metric gij (1≤ i, j≤3). It

is then clear that by fixing the coordinate system to ensure that the metric is in the form

(1.9), the system breaks the symmetry of general coordinate transformations, and we call

such symmetry-breaking as relativistic-symmetry breaking.

It is important to remark that gravitational field equations give rise only to the law of

gravity, and they do not contain fluid dynamics and thermodynamics laws.
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Another important ingredient in modeling fluid motion in astrophysics is to use the

momentum density field P(x,t) to replace the velocity field v(x,t) as the state function

of cosmic objects. The main reason is that the momentum density field P is the energy

flux containing the mass, the heat, and all interaction energy flux, and can be regarded

as a continuous field. The advantage for momentum form of fluid motion is obvious.

For example, it is clear that equation (1.3) plays an important role in deriving some key

properties of black holes.

Supernovae explosion and AGN jets

Relativistic, magnetic and thermal effects are main ingredients in astrophysical fluid

dynamics, and are responsible for many astronomical phenomena. The thermal effect is

described by the Rayleigh number Re:

Re=
mGr0r1β

κν

T0−T1

r1−r0
, (1.10)

where T0 and T1 are the temperatures at the bottom and top of an annular shell region

r0< r< r1; see e.g. (2.68) for other notations used here.

Based on our theory of black holes, including in particular the incompressibility and

closedness of black holes, the relativistic effect is described by the δ-factor:

δ=
2mG

c2r0
. (1.11)

where m is the mass of the core 0< r< r0.

Consider e.g. an active galactic nucleus (AGN), which occupies a spherical annular

shell region Rs<r<R1, where Rs is the Schwarzschild radius of the black hole core of the

galaxy. Then r0=Rs and the δ-factor is δ=1. The relativistic effect is then reflected in the

radial force

Fr =
ν

2α

∂

∂r

(
1

α

dα

dr
Pr

)
, α=

(
1− Rs

r

)−1

,

which gives rise to a huge explosive force:

ν

1−Rs/r

R2
s

r4
Pr. (1.12)

The relativistic effect is also reflected in the electromagnetic energy:

ν0

2α

∂

∂r

(
1

α

dα

dr
Hr

)
,

which consists of a huge explosive electromagnetic energy:

ν0

1−Rs/r

R2
s

r4
Hr. (1.13)
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The basic mechanism for the formation of AGN jets is that the radial temperature gra-

dient causes vertical Bénard convection cells. Each Bénard convection cell has a vertical

exit, where the circulating gas is then pushed by the radial force and erupts leading to

a jet. Each Bénard convection cell also an entrance, where the external gas is attracted

into the nucleus, is cycloaccelerated by the radial force as well, goes down to the interior

boundary r= Rs, and then is pushed toward to the exit. Thus the circulation cells form

jets in their exits and accretions in their entrances.

This mechanism can also be applied to supernovae explosion. When a very massive

red giant completely consumes its central supply of nuclear fuels, its core collapses. Its

radius r0 begins to decrease, and consequently the δ-factor increases. The huge mass

m and the rapidly reduced radius r0 make the δ-factor approaching one. The thermal

convection gives rise to an outward radial circulation momentum flux Pr. Then the radial

force as in (1.12) will lead to the supernova explosion. Also, Pr=0 at r=r0, where r0 is the

radius of blackhole core of supernovae. Consequently, the supernova’s huge explosion

preserves a smaller ball, yielding a neutron star.

2 Astrophysical Fluid Dynamics

The main objectives of this section are 1) to introduce a symmetry-breaking mechanism

to couple fluid dynamical equations with the gravitational field equation, and 2) fluid

dynamical models for astrophysical and cosmological objects such as stars, galaxies, and

clusters of galaxies.

2.1 Symmetry-breaking principle

Different physical systems obey different physical principles. The four fundamental in-

teractions of Nature, the quantum systems, the fluid dynamics and heat conduction obey

the following symmetry principles:

the general relativity for gravity,

the Lorentz and gauge invariances for the other three interactions,

the Lorentz invariance for quantum systems,

the Galilean invariance for fluid and heat conductions.

(2.1)

The corresponding fields and systems in (2.1) are governed by the following physical

laws and first principles:

PID and PRI for four fundamental interactions,

PLD for quantum systems,

the Newton Second Law for fluids,

diffusion laws for heat conductivity,

(2.2)
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Here PID stands for the principle of interaction dynamics, and PRI stands for the princi-

ple of representation invariance, both discovered recently by the authors. PLD stands for

the principle of Lagrangian dynamics.

Astrophysics is the only field that involving all the fields in (2.1) and (2.2). Conse-

quently, one needs to couple the basic laws in (2.2) to model astrophysical dynamics.

One radical difficulty we encounter now is that the Newtonian Second Law for fluid

motion and the diffusion law for heat conduction are not compatible with the principle of

general relativity. Also, there are no basic principles and rules for combining relativistic

systems and the Galilean systems together to form a consistent system. The reason is

that in a Galilean system, time and space are independent, and physical fields are 3-

dimensional; while in a relativistic system, time and space are related, and physical fields

are 4-dimensional.

The distinction between relativistic and Galilean systems gives rise to an obstacle

for establishing a consistent model of astrophysical dynamics, coupling all the physical

systems in (2.1) and (2.2).

In the unified field theory based on PID, the key ingredient for coupling gravity with

the other three fundamental interactions is achieved through spontaneous gauge symme-

try breaking. Here we propose that the coupling between the relativistic and the Galilean

systems through relativistic-symmetry breaking.

In fact, the model given by (2.69)-(2.70) follows from this symmetry-breaking princi-

ple, where we have to chose the coordinate system

xµ =(x0,x), x0= ct and x=(x1,x2,x3),

such that the metric is in the form:

ds2 =−
(

1+
2

c2
ψ(x,t)

)
c2dt2+gij(x,t)dxidxj. (2.3)

Here gij (1≤ i, j≤3) are the spatial metric, and

ψ= the gravitational potential. (2.4)

With this metric (2.3)-(2.4), we can establish the fluid and heat equations as in (2.72). It

is then clear that by fixing the coordinate system to ensure that the metric is in the form

(2.3)-(2.4), the system breaks the symmetry of general coordinate transformations, and

we call such symmetry-breaking as relativistic-symmetry breaking.

We believe the symmetry-breaking is a general phenomena when we deal with a

physical system coupling different subsystems in different levels. The unified field the-

ory for the four fundamental interactions is a special case, which couples the general

relativity, the Lorentz and the gauge symmetries. Namely, the symmetry of general rela-

tivity needs to be linked to both the Lorentz invariance and the gauge invariance in two

aspects as follows:
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• In the Dirac equations for the fermions:

iγµDµψ− c

h̄
mψ=0,

γµ have to obey two different transformations.

• The gauge-symmetry breaks in the gravitational field equations coupling the other

interactions:

Rµν−
1

2
gµνR=−8πG

c4
Tµν+

1

2
(D̃µΦν+D̃νΦµ), (2.5)

where

D̃µ =Dµ+
k1

h̄c
eAµ+

k2

h̄c
gwWµ+

k3

h̄c
gsSµ, (2.6)

Dµ is the covariant derivative, ki (1≤ i≤3) are parameters, Aµ,Wµ,Sµ are the total

electromagnetic, weak and strong interaction potentials. It is the terms Aµ,Wµ,Sµ

in (2.6) that break the gauge symmetry of (2.5).

In summary, we are ready to postulate a general symmetry-breaking principle.

Principle of Symmetry-Breaking 2.1. 1) The three sets of symmetries,

the general relativistic invariance,

the Lorentz and gauge invariances, and

the Galileo invariance,

(2.7)

are mutually independent and dictate in part the physical laws in different levels of the physical

world.

2) for a system coupling different levels of physical laws, part of these symmetries must be

broken.

2.2 Fluid dynamic equations on Riemannian manifolds

To consider astrophysical fluid dynamics, we first need to discuss the Navier-Stokes

equations on Riemannian manifolds.

Let (M,gij) be an n-dimensional Riemannian manifold. The fluid motion on M are

governed by the Navier-Stokes equations given by

∂u

∂t
+(u·∇)u=ν∆u− 1

ρ
∇p+ f for x∈M,

divu=0,

(2.8)
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where u=(u1,··· ,un) is the velocity field, p is the pressure, f is the external force, ρ is the

mass density, ν is the dynamic viscosity, and the differential operator ∆ is the Laplace-

Beltrami operator defined as ∆u=(∆u1,··· ,∆un) with

∆ui = div(∇ui)+gijRjkuk, (2.9)

div(∇ui)= gkl

[
∂

∂xl

(
∂ui

∂xk
+Γ

i
kju

j

)
+Γ

i
lj

(
∂uj

∂xk
+Γ

j
ksu

s

)
−Γ

j
kl

(
∂ui

∂xj
+Γ

i
jsu

s

)]
. (2.10)

Here Rij is the Ricci curvature tensor and Γ
i
kj the Levi-Civita connection:

Rij=
1

2
gkl

(
∂2gkl

∂xi∂xj
+

∂2gij

∂xk∂xl
− ∂2gkj

∂xi∂xl
− ∂2gli

∂xj∂xk

)
+gkl grs

(
Γ

r
klΓ

s
ij−Γ

r
ilΓ

s
kj

)
, (2.11)

Γ
i
kj =

1

2
gil

(
∂gkl

∂xj
+

∂gjl

∂xk
− ∂gkj

∂xl

)
. (2.12)

The nonlinear convection term (u·∇)u in (2.8) is defined by

(u·∇)u=(uiDiu
1,··· ,uiDiu

n),

uiDiu
k =ui ∂uk

∂xi
+Γ

k
iju

iuj
(2.13)

the pressure term is

∇p=

(
g1k ∂p

∂xk
,··· ,gnk ∂p

∂xk

)
, (2.14)

the divergence of u is

divu=
∂uk

∂xk
+Γ

k
jkuj=

1√
g

∂(
√

guk)

∂xk
, (2.15)

and g= det(gij).
By (2.9) and (2.13)-(2.15), the Navier-Stokes equations (2.8) can be equivalently writ-

ten as
∂ui

∂t
+uk ∂ui

∂xk
+Γ

i
kju

kuj=ν
[
div(∇ui)+gijRjkuk

]
− 1

ρ
gij ∂p

∂xj
+ f i,

∂uk

∂xk
+Γ

k
jkuj =0.

(2.16)

Remark 2.2. In the Navier-Stokes equations (2.8), the Laplace operator ∆ can be taken in

two forms:

∆=dδ+δd the Laplace-Beltrami operator, (2.17)

∆= div·∇ the Laplace operator. (2.18)
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Here we choose (2.17) instead of (2.18) to represent the viscous term in (2.8). The reason

is that the Laplace-Beltrami operator

(dδ+δd)ui = div·∇ui+gijRjkuk

gives rise to an additional term gijRjkuk. In fluid dynamics, the term µ div·∇u represents

the viscous (frictional) force, and the term gijRjkuk is the force generated by space cur-

vature and gravitational interaction. Hence physically, it is more natural to take (2.17)

instead of (2.18).

Remark 2.3. In the fluid dynamic equations (2.16), the symmetry of general relativity

breaks, and the space and time are treated independently.

2.3 Schwarzschild and Tolman-Oppenheimer-Volkoff (TOV) metrics

We recall in this section the classical Schwarzschild and TOV metrics for centrally sym-

metric gravitational fields.

Schwarzschild metric

Many stars in the Universe are spherically-shaped, generating centrally symmetric

gravitational fields. It is known that the Riemannian metric of a spherically symmetric

gravitation field takes the following form:

ds2 =−euc2dt2+evdr2+r2(dθ2+sin2θdϕ2), (2.19)

where (r,θ,ϕ) is the spherical coordinate system, and u=u(r,t) and v=v(r,t) are functions

of r and t, which are determined by the gravitational field equations.

In the exterior of a ball, the Einstein field equations become

Rµν=0 (2.20)

Since the gravitational resource is static, u and v depend only on r. It is then easy to

derive the Schwarzschild metric in the vacuum exterior of a centrally symmetric matter

field with mass m:

ds2 =−
(

1− 2mG

c2r

)
c2dt2+

(
1− 2mG

c2r

)−1

dr2+r2dθ2+r2sin2θdϕ2. (2.21)

We have in particular

e−v= eu =1− 2mG

c2r
.

TOV metric
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The Schwarzschild metric (2.21) describes the exterior gravitational fields of a cen-

trally symmetric ball. For the interior gravitational fields, the metric is given by the TOV

solution.

Let m be the mass of a centrally symmetric ball, and R be the radius of this ball. In the

interior of the ball, the variable r satisfies 0≤ r<R. Let the ball be a static liquid sphere

consisting of idealized fluid, an approximation of stars. The energy-momentum tensor of

an idealized fluid is in the form

Tµν=(ρ+p)uµuν+pgµν,

where p is the pressure, ρ is the density, and uµ is the 4-velocity. For a static fluid, uµ is

given by

uµ=
1√−g00

(1,0,0,0).

Hence, the (1,1)-type of the energy-momentum tensor is in the form

Tν
µ =




−c2ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p


.

The Einstein field equations can be written as

e−v

(
1

r2
− v′

r

)
− 1

r2
=−8πG

c2
ρ, (2.22)

e−v

(
1

r2
+

u′

r

)
− 1

r2
=

8πG

c4
p, (2.23)

e−v(u′′− 1

2
u′v′+

1

2
u′2+

1

r
u′− 1

r
v′)=

16πG

c2
p, (2.24)

p′+
1

2
(p+c2ρ)u′=0. (2.25)

By the Bianchi identity, only three equations of (2.22)-(2.25) are independent. Here we

also regard p and ρ as unknown functions. Therefore, for the four unknown functions

u,v,p,ρ, we have to add an equation of state to the system of (2.22)-(2.25):

ρ= f (p), (2.26)

and the function f will be given according to physical conditions.

On the surface r=R of the ball, p=0 and u and v are given in terms of the Schwarzschild

solution:

p(R)=0, u(R)=−v(R)= ln

(
1− 2Gm

Rc2

)
. (2.27)
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We are now in position to discuss the solutions of problem (2.22)-(2.27). Let

M(r)=
c2r

2G
(1−e−v). (2.28)

Then the equation (2.22) can be rewritten as

1

r2

dM

dr
=4πρ,

whose solution is given by

M(r)=
∫ r

0
4πr2ρdr for 0< r<R. (2.29)

By (2.29), we see that M(r) is the mass, contained in the ball Br. It follows from (2.28) that

e−v=1− 2GM(r)

c2r
. (2.30)

Inserting (2.30) in (2.23) we obtain

u′=
1

r(c2r−2MG)

[
8πG

c2
pr3+2GM(r)

]
. (2.31)

Putting (2.31) into (2.25) we get

p′=− (p+c2ρ)

2r(c2r−2MG)

[
8πG

c2
pr3+2GM(r)

]
. (2.32)

Thus, it suffices for us to derive the solution p,M and ρ from (2.26)-(2.28) and (2.32),

and then v and u will follow from (2.30)-(2.31) and (2.27).

The equation (2.32) is called the TOV equation, which was derived to describe the

structure of neutron stars.

We note that (2.30) is the interior metric of a blackhole provided that 2GM(r)/c2r=1.

Thus the TOV solution (2.30) gives a rigorous proof of the following theorem for the

existence of black holes.

Theorem 2.4. If the matter field in a ball BR of radius R is spherically symmetric, and the mass

MR and the radius R satisfy
2GMR

c2R
=1,

then the ball must be a blackhole.

An idealized model is that the density is homogeneous, i.e. (2.26) is given by

ρ=ρ0 a constant.
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In this case, we have

M(r)=
4π

3
ρ0r3 for 0≤ r≤R,

ρ0=
3

4π

m

R3
.

Thus we obtain the following solution of (2.30)-(2.32) with (2.27):

p(r)=ρ0




(
1− 2Gmr2

c2R3

)1/2
−
(
1− 2Gm

c2R

)1/2

3
(
1− 2Gm

c2R

)1/2−
(

1− 2Gmr2

c2R3

)1/2


, (2.33)

eu =

[
3

2

(
1− 2Gm

c2R

)1/2

− 1

2

(
1− 2Gmr2

c2R3

)1/2
]2

, (2.34)

ev =

[
1− 2Gmr2

c2R3

]−1

. (2.35)

The functions (2.33)-(2.35) are the TOV solution. By (2.19), the solution (2.34) and (2.35)

yields the metric

ds2 =−
[

3

2

(
1− 2Gm

c2R

)1/2

− 1

2

(
1− 2Gmr2

c2R3

)1/2
]2

c2dt2

+

[
1− 2Gmr2

c2R3

]−1

dr2+r2(dθ2+sin2θdϕ2), (2.36)

which is called the TOV metric.

2.4 Differential operators in spherical coordinates

In Subsection 2.2, we gave the Navier-Stokes equations on general Riemannian mani-

folds. For astrophysical fluid dynamics, we mainly concern the equations on 3D spheres.

Hence in this subsection we discuss the basic differential operators (2.9)-(2.15) under the

spherical coordinate systems (θ,ϕ,r).
For a 3D sphere M, the Riemannian metric is given by

ds2=α(r)dr2+r2dθ2+r2sin2 θdϕ2 (2.37)

where α(r)>0 represents the relativistic effects:

α=





1 no relativistic effect,
(

1− 2Gm

c2r

)−1

for the Schwarzschild metric (2.21),

(
1− 2Gmr2

c2R3

)−1

for the TOV metric (2.36).

(2.38)



320 Ma and Wang / J. Math. Study, 47 (2014), pp. 305-378

In (2.37) we have

g11=α(r), g22= r2, g33= r2sin2 θ, gij =0 for i 6= j.

By (2.12) we can get the Levi-Civita connection as

Γ
2
21=Γ

2
12=

1

r
, Γ

2
33=−sinθcosθ, Γ

3
31=Γ

3
13=

1

r
,

Γ
3
32=Γ

3
32=

cosθ

sinθ
, Γ

1
22=− r

α
, Γ

1
33=− r

α
sin2 θ,

Γ
1
11=

1

2α

dα

dr
, Γ

k
ij=0 for others.

(2.39)

We deduce from (2.39) the explicit form of the Ricci curvature tensor (2.11):

R11=− 1

αr

dα

dr
, R22=

1

α
− r

2α2

dα

dr
−1, R33=R22sin2θ, Rij =0 ∀i 6= j. (2.40)

Based on (2.39) and (2.40) we can obtain the expressions of the differential operators (2.9)-

(2.15) as follows:

1) The Laplace-Beltrami operator ∆uk =(∆ur ,∆uθ,∆uϕ):

∆uθ =
1

r2

[
1

sinθ

∂

∂θ

(
sinθ

∂uθ

∂θ

)
+

1

sin2θ

∂2uθ

∂ϕ2

+
1

α

∂

∂r

(
r2 ∂uθ

∂r

)
+

2

r

∂ur

∂θ
− 2cosθ

sinθ

∂uϕ

∂ϕ
− 1

sin2 θ
uθ

]

+
1

αr2

[
2

∂

∂r
(ruθ)−

α′

2α

∂

∂r
(r2uθ)

]
, (2.41)

∆uϕ =
1

r2

[
1

sinθ

∂

∂θ

(
sinθ

∂uϕ

∂θ

)
+

1

sin2θ

∂2uϕ

∂ϕ2
+

1

α

∂

∂r

(
r2 ∂uϕ

∂r

)

+
2cosθ

sinθ

∂uϕ

∂θ
−2uϕ+

2cosθ

sin3 θ

∂uθ

∂ϕ
+

2

rsin2θ

∂ur

∂ϕ

]

+
1

αr2

[
2

∂

∂r
(ruϕ)−

α′

2α

∂

∂r
(r2uϕ)

]
, (2.42)

∆ur =
1

r2

[
1

sinθ

∂

∂θ

(
sinθ

∂ur

∂θ

)
+

1

sin2θ

∂2ur

∂ϕ2
+

1

α

∂

∂r

(
r2 ∂ur

∂r

)]

− 2

αr2

[
ur+r

cosθ

sinθ
uθ+r

∂uθ

∂θ
+r

∂uϕ

∂ϕ
− r2

2

∂

∂r

(
α′

2α
ur

)]
. (2.43)
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2) By (2.13) and (2.39), (u·∇)uk can be written as

ukDkuθ =ur
∂uθ

∂r
+uθ

∂uθ

∂θ
+uϕ

∂uθ

∂ϕ
+

2

r
uθur−sinθcosθu2

ϕ (2.44)

ukDkuϕ =ur
∂uϕ

∂r
+uθ

∂uϕ

∂θ
+uϕ

∂uϕ

∂ϕ
+

2cosθ

sinθ
uθuϕ+

2

r
uϕur, (2.45)

ukDkur =ur
∂ur

∂r
+uθ

∂ur

∂θ
+uϕ

∂ur

∂ϕ
− r

α
(u2

θ+sin2θu2
ϕ−

α′

2r
u2

r ). (2.46)

3) The gradient operator:

∇p=

(
1

α

∂p

∂r
,

1

r2

∂p

∂θ
,

1

r2sin2θ

∂p

∂ϕ

)
. (2.47)

4) By (2.15) and
√

g= r2sinθ
√

α, the divergent operator divu is

divu=
1

sinθ

∂

∂θ
(sinθuθ)+

∂uϕ

∂ϕ
+

1

r2
√

α

∂

∂r
(r2

√
αur). (2.48)

Remark 2.5. The expressions (2.41)-(2.48) are the differential operators appearing in the

fluid dynamic equations describing the stellar fluids. However, we need to note that the

two components uθ and uϕ are the angular velocities of θ and ϕ, i.e.

uθ =
dθ

dt
, uϕ=

dϕ

dt
.

In classical fluid dynamics, the velocity field v=(vθ ,vϕ,vr) is the line velocity. The relation

of u and v is given by

uθ =
1

r
vθ , uϕ=

1

rsinθ
vϕ, ur =vr. (2.49)

Hence, inserting (2.49) into (2.8) with the expressions (2.41)-(2.48), we derive the

Navier-Stokes equations in the usual spherical coordinate form as follows

∂vθ

∂t
+(u·∇)vθ =ν∆vθ−

1

ρr

∂p

∂θ
+ fθ ,

∂vϕ

∂t
+(u·∇)vϕ =ν∆vϕ−

1

ρrsinθ

∂p

∂ϕ
+ fϕ,

∂vr

∂t
+(u·∇)vr =ν∆vr−

1

ρα

∂p

∂r
+ fr,

div v=0,

(2.50)
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where

∆vθ =∆̃vθ+
2

r2

∂vr

∂θ
− 2cosθ

r2sin2 θ

∂vϕ

∂ϕ
− vθ

r2sin2θ
− 1

2α2r

dα

dr

∂

∂r
(rvθ),

∆vϕ =∆̃vϕ+
2

r2sinθ

∂vr

∂ϕ
+

2cosθ

r2sin2θ

∂vθ

∂ϕ
− vϕ

r2sin2θ
− 1

2α2r

dα

dr

∂

∂r
(rvϕ),

∆vr =∆̃vr−
2

αr2

(
vr+

∂vθ

∂θ
+

cosθ

sinθ
vθ+

1

sinθ

∂vϕ

∂ϕ

)
+

1

2α

∂

∂r

(
1

α

dα

dr
vr

)
,

(2.51)

∆̃ is the Laplace operator for scalar fields given by

∆̃T=
1

r2sinθ

∂

∂θ
(sinθ

∂T

∂θ
)+

1

r2sin2 θ

∂2T

∂ϕ2
+

1

αr2

∂

∂r
(r2 ∂T

∂r
), (2.52)

the nonlinear term (u·∇)v is

(v·∇)vθ =
vθ

r

∂vθ

∂θ
+

vϕ

rsinθ

∂vθ

∂ϕ
+vr

∂vθ

∂r
+

vθvr

r
−

cosθv2
ϕ

rsinθ
,

(v·∇)vϕ =
vθ

r

∂vϕ

∂θ
+

vϕ

rsinθ

∂vϕ

∂ϕ
+vr

∂vϕ

∂r
+

vϕvr

r
+

cosθvϕvθ

rsinθ
,

(v·∇)vr =
vθ

r

∂vr

∂θ
+

vϕ

rsinθ

∂vr

∂ϕ
+vr

∂vr

∂r
− 1

αr
(v2

θ+v2
ϕ)+

1

2α

dα

dr
v2

r ,

(2.53)

and the divergent term div v reads

div v=
1

rsinθ

∂(sinθvθ)

∂θ
+

1

rsinθ

∂vϕ

∂ϕ
+

1

r2
√

α

∂(r2
√

αvr)

∂r
. (2.54)

2.5 Momentum representation

The Universe, galaxies and galactic clusters are composed of stars and interstellar nebu-

lae. Their velocity fields are not continuous. Hence it is not appropriate that we model

cosmic objects using continuous velocity field v(x,t) as in the Navier-Stoks equations or

by discrete position variables xk(t) as in the N-body problem.

The idea is that we use the momentum density field P(x,t) to replace the velocity field

v(x,t) as the state function of cosmic objects. The main reason is that the momentum

density field P is the energy flux containing the mass, the heat, and all interaction energy

flux, and can be regarded as a continuous field. The aim of this section is to establish the

momentum form of astrophysical fluid dynamics model.

The physical laws governing the dynamics of cosmic objects are as follows

Theory of General Relativity,

Newtonian Second Law,

Heat Conduction Law,

Energy-Momentum Conservation,

Equation of State.

(2.55)
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The mathematical expressions of these laws are given respectively in the following.

1) Gravitational field equations.

Rµν−
1

2
gµνR=−8πG

c4
Tµν+

1

2
(D̃µΦν+D̃νΦµ),

D̃µ=Dµ+
e

h̄c
Aµ,

(2.56)

where Aµ is the electromagnetic potential, the time components of gµν are as

g00 =−
(

1+
2

c2
ψ

)
, g0k = gk0 =0 for 1≤ k≤3,

and ψ is the gravitational potential.

2) Fluid dynamic equations. The Newton Second Law can be expressed as

dP

dτ
= Force, (2.57)

where τ is the proper time given by

dτ=
√
−g00dt, (2.58)

P is the momentum density field, formally defined by

dx

dτ
=

1

ρ
P,

with ρ being the energy density,

dP

dτ
=

∂P

∂τ
+

∂P

∂xk

dxk

dτ
=

∂P

∂τ
+

1

ρ
(P·∇)P,

and

ν∆P+µ∇(divP) the frictional force,

−∇p the pressure gradient,

c2

2
ρ(1−βT)∇g00 =−ρ(1−βT)∇ψ the gravitational force.

Hence, the momentum form of the fluid dynamic equations (2.57) is written as

∂P

∂τ
+

1

ρ
(P·∇)P=ν∆P+µ∇(divP)−∇p−ρ(1−βT)∇ψ, (2.59)

where the differential operators ∆,∇ and (P·∇) are with respect to the space metric

gij (1≤ i, j≤3) determined by (2.56), as defined in (2.9)-(2.15).
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3) Heat conduction equation:

∂T

∂τ
+

1

ρ
(P·∇)T=κ∆̃T+Q, (2.60)

where ∆̃ is defined as

∆̃T=− 1√
g

∂

∂xi
(
√

ggij ∂T

∂xj
),

and g= det(gij),1≤ i, j≤3.

4) Energy-momentum conservation:

∂ρ

∂τ
+ divP=0, (2.61)

where ρ is the energy density:

ρ= mass + electromagnetism + potential + heat.

5) Equation of state:

p= f (ρ,T). (2.62)

Remark 2.6. Both physical laws (2.57) and (2.61) are the more general form than the

classical ones:

m
dv

dτ
=Force the Newton Second Law,

∂m

∂τ
+ div(mv)=0 the continuity equation,

(2.63)

where m is the mass density. Hence the momentum representation equations (2.59)-(2.61)

can be applicable in general. The momentum P represents the energy density flux, con-

sisting essentially of

P=mv+ radiation flux+heat flux.

Hence in astrophysics, the momentum density P is a better candidate than the velocity

field v, to serve as the continuous-media type of state function.

2.6 Astrophysical Fluid Dynamics Equations

Dynamic equations of stellar atmosphere

Different from planets, stars are fluid spheres. Like the Sun, most of stars possess

atmospheric layers. The atmospheric dynamics of stars is an important topic, and we are

now ready to present the stellar atmospheric model.
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The spatial domain is a spherical shell:

M={x∈R
3 | r0< r< r1}.

The stellar atmosphere consists of rarefied gas. For example, the solar corona has mass

density about ρm=10−9ρ0 where ρ0 is the density of the earth atmosphere. Hence we use

the Schwarzschild solution in (2.38) as the metric:

α(r)=

(
1− 2mG

c2r

)−1

, r0 >
2mG

c2
. (2.64)

where m is the total mass of the star, and the condition r0 >2mG/c2 ensures that the star

is not a black hole.

The stellar atmospheric model is the momentum form of the astrophysical fluid dy-

namical equations defined on the spherical shell M:

∂P

∂τ
+

1

ρ
(P·∇)P=ν∆P+µ∇(divP)−∇p−mGρ

r2
(1−βT)~k,

∂T

∂τ
+

1

ρ
(P·∇)T=κ∆̃T,

∂ρ

∂τ
+ divP=0,

(2.65)

where P=(Pr,Pθ,Pϕ) is the momentum density field, T is the temperature, p is the pres-

sure, ρ is the energy density, ν and µ is the viscosity coefficient, β is the coefficient of

thermal expansion, κ is the thermal diffusivity, α is as in (2.64), ∆P,(P·∇)P,∆̃T,div P are

as in (2.51)-(2.54), and

(P·∇)T=
Pθ

r

∂T

∂θ
+

Pϕ

rsinθ

∂T

∂ϕ
+Pr

∂T

∂r
. (2.66)

The equations (2.65) are supplemented with the boundary conditions:

Pr =0,
∂Pθ

∂r
=0,

∂Pϕ

∂r
=0 at r= r0,r1,

T=T0 at r= r0,

T=T1 at r= r1,

(2.67)

where T0 and T1 are approximatively taken as constants and satisfy the physical condition

T0>T1.

A few remarks are now in order:
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Remark 2.7. First, there are three important parameters: the Rayleigh number Re, the

Prandtl number Pr and the δ-factor δ, which play an important role in astrophysical fluid

dynamics:

Re=
mGr0r1β

κν

T0−T1

h
, Pr=

ν

κ
, δ=

2mG

c2r0
. (2.68)

The δ-factor δ reflects the relativistic effect contained the Laplacian operator.

Remark 2.8. Astronomic observations show that the Sun has three layers of atmospheres:

the photosphere, the chromosphere, and the solar corona, where the solar atmospheric

convections occur. It manifests that the thermal convection is a universal phenomenon

for stellar atmospheres. In the classical fluid dynamics, the Rayleigh number dictates

the Rayleign-Bénard convection. Here, however, both the Rayleigh number Re and the

δ-factor defined by (2.68) play an important role in stellar atmospheric convections.

Remark 2.9. For rotating stars with angular velocity ~Ω, we need add to the right hand

side of (2.65) the Coriolis term:

−2~Ω×P=2Ω(sinθPr−cosθPθ,cosθPϕ,−sinθPϕ),

where Ω is the magnitude of ~Ω.

Fluid dynamical equations inside open balls

As the fluid density in a stellar atmosphere is small, the equations (2.65) can be re-

garded as a precise model governing the stellar atmospheric motion. However, for a fluid

sphere with high density, the fluid dynamic equations have to couple the gravitational

field equations.

The Universe and all stars are in the momentum-flow state, i.e. they are fluid spheres.

To investigate the interiors of the Universe, galaxies and stars, we need to develop dy-

namic models for fluid spheres.

The precise equations of fluid sphere should be defined in the Riemannian metric

space as follows:

ds2 = g00(x,t)c2dt2+gij(x,t)dxidxj for x∈M3, (2.69)

where M3 is the spherical space. The gravitational field equations are expressed as

Rµν−
1

2
gµνR=−8πG

c4
Tµν−DµΦµ, (gj0 = g0j =0,1≤ j≤3), (2.70)

where

Tµν= gµαgνβ

[
εαεβ+pgαβ

]
,

and εµ is the 4D energy-momentum vector.

For the fluid component of the system, it is necessary to simplify the model by making

some physically sound approximations.
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Hypothesis 2.10. The metric (2.69) and the stationary solutions of the fluid dynamical equations

are radially symmetric.

Under Hypothesis 2.10, the metric (2.69) is as in (2.19), or is written in the following

form

ds2=−ψ(r)c2dt2+α(r)dr2+r2dθ2+r2sin2θdϕ2, (2.71)

and the fluid dynamic equations are rewritten as

∂P

∂τ
+

1

ρ
(P·∇)P=ν∆P+µ∇(divP)−∇p− c2ρ

2α

dψ

dr
(1−β(T−T0))~k,

∂T

∂τ
+

1

ρ
(P·∇)T=κ∆̃T+Q(r),

∂ρ

∂τ
+divP=0,

(2.72)

where P=(Pr,Pθ,Pϕ),∇P,∆̃T,(P·∇)P, div P are as in (2.51)-(2.54), ∇p is as in (2.50),~k=
(1,0,0), and

(P·∇)T=Pr
∂T

∂r
+

Pθ

r

∂T

∂θ
+

Pϕ

rsinθ

∂T

∂ϕ
.

The gravitational field equation (2.70) for the metric (2.71) is radially symmetric,

therefore

Φν =Dνφ, φ=φ(r).

Thus we have

D0D0φ=
1

2αψ
ψ′φ′, D1D1φ=

1

α
φ′′− 1

2α2
α′φ′,

D2D2φ=D3D3φ=
1

rα
φ′, DµDνφ=0 for µ 6=ν.

Then, in view of (2.22)-(2.25), the equation (2.70) can be expressed by

1

α

(
1

r2
− α′

rα

)
− 1

r2
=−8πG

c2
ρ0+

1

2αψ
ψ′φ′,

1

α

(
1

r2
+

ψ′

rψ

)
− 1

r2
=

8πG

c2
p+

1

α
φ′′− 1

2α2
α′φ′,

1

α

[
ψ′′

ψ
− 1

2

(
ψ′

ψ

)2

− α′ψ′

2αψ
+

1

r

(
ψ′

ψ
− α′

α

)]
=

16πG

c2
p+

2

rα
φ′,

(2.73)

where the pressure p satisfies the stationary equations of (2.72) with P=0 as follows

p′=− c2

2
ψ′ρ[1−β(T−T0)],

κ

αr2

d

dr

(
r2 dT

dr

)
=−Q(r).

(2.74)
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The functions ψ and α satisfy the boundary conditions (2.27), i.e.

ψ(r0)=1− 2Gm

c2r0
, α(r0)=

(
1− 2Gm

c2r0

)−1

. (2.75)

In addition, for the ordinary differential equations (2.73)-(2.75), we also need the bound-

ary conditions for ψ′,φ′ and T. Since − 1
2 c2ψ′ represents the gravitational force, the condi-

tion of ψ′ at r= r0 is given by

ψ′(r0)=
2mG

c2r2
0

. (2.76)

Based on the Newton gravitational law, φ′ is very small in the external sphere; also see [5].

Hence we can approximatively take that

φ′(r0)=0. (2.77)

Finally, it is rational to take the temperature gradient in the boundary condition as follows

∂T

∂r
(r0)=−A (A>0). (2.78)

Let the stationary solution of the problem (2.73)-(2.75) be given by p̃,T̃,ψ,α,φ′. Make

the translation transformation

P→P, p→ p+ p̃, T→T+ T̃.

Then equations (2.72) are rewritten in the form

∂P

∂τ
+

1

ρ
(P·∇)P=ν∆P−∇p+

c2ρ

2α

dψ

dr
β~kT,

∂T

∂τ
+

1

ρ
(P·∇)T=κ∆̃T− 1

ρ

dT̃

dr
Pr,

div P=0,

(2.79)

supplemented with the boundary conditions:

∂T

∂r
=0, Pr =0,

∂Pθ

∂r
=

∂Pϕ

∂r
=0 at r= r0. (2.80)

The model (2.79)-(2.80), we just derived describes interior dynamics of the Universe,

galaxies and stars.
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3 Stars

3.1 Main driving force for stellar dynamics

Stars can be regarded as fluid balls. To investigate the stellar interior dynamic behavior,

we need to use the fluid spherical models coupling the heat conductivity equation. There

are two types of starts: stable and unstable. The sizes of stable stars do not change. The

main-sequence stars, white dwarfs and neutron stars are stable stars. The radii of un-

stable stars may change; variable stars and expanding red giants are unstable stars. The

dynamic equations governing the two types of stars are different, and will be addressed

hereafter separately.

We note that the fluid dynamic equations (2.72) represent the Newton’s second law,

and their left-hand sides are the acceleration and their right-hand sides are the total force.

The total force consists of four parts: the viscous friction, the pressure gradient, the rela-

tivistic effect, and the thermal expansion force, which are given as follows:

• The viscous friction force is caused by the electromagnetic, the weak and the strong

interactions between the particles and the pressure, and is given by

FνP=ν△P=ν(∆Pθ ,∆Pϕ,∆Pr), (3.1)

as defined by (2.51).

• The pressure gradient is defined by:

−∇p=−
(

1

r

∂p

∂θ
,

1

rsinθ

∂p

∂ϕ
,
1

α

∂p

∂r

)
. (3.2)

• The relativistic effect is reflected in the following terms:

FGP=

(
− ν

2α2r

dα

dr

∂

∂r
(rPθ),−

ν

2α2r

dα

dr

∂

∂r
(rPϕ),

ν

2α

∂

∂r

(
1

α

dα

dr
Pr

))
, (3.3)

which can be regarded as the coupling interaction between the gravitational poten-

tial α and the electromagnetic, the weak and the strong potentials represented by

the viscous coefficient ν.

We shall see that the force (3.3) is responsible to the supernova’s huge explosion.

• The thermal expansion force is due to the coupling between the gravity ∇ψ and the

heat Q:

FT =

(
0,0,

c2

2α

dψ

dr
βT

)
, (3.4)

which is the main driving force for generating stellar interior circulations and neb-

ular matter spurts of red giants.



330 Ma and Wang / J. Math. Study, 47 (2014), pp. 305-378

The two forces (3.3) and (3.4) are the main driving forces for the stellar motion, and

hereafter we derive their explicit formulas.

1) Formula for thermal expansion force. The thermal expansion force (3.4) is radially

symmetric, which is simply written in the r-component form

fT =
c2

2α

dψ

dr
βT.

In its nondimensional form, fT is expressed as

fT =σ(r)T, (3.5)

and σ(r) is called the thermal factor given by

σ(r)=− c2r4
0β

2κ2

1

α

dT

dr

dψ

dr
. (3.6)

Here α,ψ,T satisfy equations (2.73)-(2.74) with the boundary conditions (2.75)-(2.78). The

detailed derivation of (3.5)-(3.6) will be given hereafter.

The σ-factor (3.6) can be expressed in the following form, to be deduced later:

σ(r)=
c2r3

0(1−δ)β

2κ2r2

eζ(r)

eζ(1)
·(1−δr2−η)·

(
1

r2

δr2+η

1−δr2−η
+rξ

)

·
(

A− 1

κ

∫ 1

r

r2Q

1−δr2−η
dr

)
for 0≤ r≤1, (3.7)

where

η=
1

2r

∫ r

0

r2ψ′φ′

αψ
dr,

ζ=
∫ r

0

(α

r
+rξ

)
dr,

ξ=
8πG

c2
αp+φ′′− α′φ′

2α
for 0≤ r≤1,

(3.8)

δ is called the δ-factor given by

δ=
2mG

c2r0
, (3.9)

and m,r0 are the mass and radius of the star.

2) Formula for the relativistic effect. The term FGP in (3.3) can be expressed in the fol-

lowing form:

FGP=




−ν
(

δ+ η ′

2r

)
∂
∂r (rPθ)

−ν(δ+ η ′

2r )
∂
∂r (rPϕ)

ν
2

(
(2δr+η ′)2

1−δr2−η
+2δ+η′′

)
Pr+

ν
2 (2δr+η′) ∂

∂r Pr




, (3.10)
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where η,δ are as in (3.8) and (3.9).

The force FGP is of special importance in studying supernovae, black holes, and the

galaxy cores. In fact, by the boundary conditions (2.75)-(2.77), we can reduce that the

radial component of the force (3.10) on the stellar shell is as

fr =

(
2νδ2

1−δ
+δ+φ′′(1)

)
Pr+δν

∂Pr

∂r
,

which has

fr ∼
2νδ2

1−δ
Pr →∞ as δ→1 (for Pr >0). (3.11)

The property (3.11) will lead to a huge supernovae explosions as they collapse to the radii

r0 → 2mG/c2. It is the explosive force (3.11) that prevents the formation of black holes;

see Sections 3.4 and 4.3.

3) Derivation of formula (3.10). To deduce (3.10) we have to derive the gravitational

potential α. The first equation of (2.73) can be rewritten as

dM

dr
=4πr2ρ0−

c2

4G

r2ψ′φ′

αψ
, M=

c2r

2G
(1− 1

α
),

It gives the solution as

M=
4

3
πr3ρ0−

c2

4G

∫ r

0

r2ψ′φ′

αψ
dr, α=

(
1− 2MG

c2r

)−1

.

By ρ0=m/ 4
3 πr3

0, and in the nondimensional form (r→ r0r), we get

α=(1−δr2−η)−1 for 0≤ r≤1, (3.12)

where η,δ are as in (3.8) and (3.9). By (2.75) we have

η(1)=0, (i.e. η(r0)=0). (3.13)

Then, the formula (3.10) follows from (3.12).

4) Derivation of σ-factor (3.7). By (3.6) we need to calculate T′ and ψ′. By (2.74), T′ can

be expressed in the form
dT

dr
=− 1

κr2

∫ r

0
r2αQdr+

a

r2
,

where a is a determined constant. By (2.78) we obtain

a=−Ar2
0+

1

κ

∫ r0

0
r2αQdr.
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In the nondimensional form, we have

dT

dr
=− A

r2
+

1

κr2

∫ 1

r
r2αQdr for 0≤ r≤1, A>0. (3.14)

To consider ψ′, by the second equation of (2.73) we obtain

ψ=
k

r
eζ(r), (3.15)

where ζ(r) is as in (3.8), k is a to-be-determined constant. In view of (2.75), i.e. ψ(1)=1−δ,

we have

k=(1−δ)e−ζ(1).

Then, it follows from (3.15) that

dψ

dr
=

(1−δ)eζ(r)

eζ(1)r0

(
α−1

r2
+rξ

)
for 0≤ r≤1, (3.16)

where ξ is as in (3.8). By (2.76) and (3.12)-(3.13), we can deduce that

ξ(1)=0, (i.e. ξ(r0)=0). (3.17)

Thus, the σ-factor (3.7) follows from (3.12), (3.14) and (3.16).

5) Thermal Force and (3.17). The thermal expansion force acting on the stellar shell (i.e.

at r= r0) can be deduced from (3.5) and (3.7) in the following (nondimensional) form

fT =σ0T, σ0=
c2r3

0β(1−δ)δ

2κ2
A (A>0). (3.18)

By 0<δ<1, we have

σ0>0 (σ0=σ(1), i.e. σ(r0)).

Hence, it follows that there is an ε≥0 such that

σ(r)>0, for ε< r≤1. (3.19)

The positiveness of σ(r) in (3.19) shows that the thermal force fT of (3.18) is an out-

ward expanding force. It is this power that causes the swell and the nebular matter spurt

of a red giant. We also remark that the temperature gradient A on the boundary is main-

tained by the heat source Q.
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3.2 Stellar interior circulation

Recapitulation of dynamic transition theory

First we briefly recall the dynamic transition theory developed by the authors in [3]

and the references therein. Many dissipative systems, both finite and infinite dimen-

sional, can be written in an abstract operator equation form as follows

du

dt
= Lλu+G(u,λ), (3.20)

where Lλ is a linear operator, G is a nonlinear operator, and λ is the control parameter.

It is clear that u= 0 is a stationary solution of (3.20). We say that (3.20) undergoes a

dynamic transition from u=0 at λ=λ1 if u=0 is stable for λ<λ1, and unstable for λ>λ1.

The dynamic transition of (3.20) depends on the linear eigenvalue problem:

Lλϕ=β(λ)ϕ.

Mathematically this eigenvalue problem has eigenvalues βk(λ)∈C such that

Reβ1(λ)>Reβ2(λ)> ··· .

The following are the main conclusions for the dynamic transition theory; see [3] for

details:

• Dynamic transitions of (3.20) take place at (u,λ)=(0,λ1) provided that λ1 satisfies

the following principle of exchange of stability (PES):

Reβ1





<0 for λ<λ1 (or λ>λ1),

=0 for λ=λ1,

>0 for λ>λ1 (or λ<λ1),

Reβk(λ1)<0 ∀k≥2.

(3.21)

• Dynamic transitions of all dissipative systems described by (3.20) can be classified

into three categories: continuous, catastrophic, and random. Thanks to the univer-

sality, this classification is postulated in citeptd as a general principle called princi-

ple of dynamic transitions.

• Let uλ be the first transition state. Then we can also use the same stratege outlined

above to study the second transition by considering PES for the following linearized

eigenvalue problem

Lλ ϕ+DG(uλ,λ)ϕ=β(2)(λ)ϕ.

Also we know that successive transitions can lead to chaos.
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Stellar interior circulation

The governing fluid component equations are (2.79). We first make the nondimen-

sional. Let

(r,τ)=(r0r′,r2
0τ′/κ),

(P,T,p)=

(
κP′/r0,−dT̃

dr
r0T′,ρ0κ2 p′/r2

0

)
.

Then the equations (2.79) are rewritten as (drop the primes):

∂P

∂τ
+

1

ρ
(P·∇)P=Pr∆P+

1

κ
FGP+σ(r)T~k−∇p,

∂T

∂τ
+

1

ρ
(P·∇)T= ∆̃T+Pr,

divP=0,

(3.22)

where P= (Pθ,Pϕ,Pr),~k= (0,0,1), σ(r) and FGP are as in (3.7) and (3.10), Pr= ν/κ is the

Prandtl number, and the ∆ is given by

∆Pθ = ∆̃Pθ+
2

r2

∂Pr

∂θ
− 2cosθ

r2sin2 θ

∂Pϕ

∂ϕ
− Pθ

r2sin2θ
,

∆Pϕ = ∆̃Pϕ+
2

r2sinθ

∂Pr

∂ϕ
+

2cosθ

r2sinθ

∂Pθ

∂ϕ
− Pϕ

r2sin2θ
,

∆Pr = ∆̃Pr−
2

αr2

(
Pr+

∂Pθ

∂θ
+

cosθ

sinθ
Pθ+

1

sinθ

∂Pϕ

∂ϕ

)
,

(3.23)

Based on the dynamic transition theory introduced early in this section, the stellar

circulation depends on the following three forces:

Pr∆P,
1

κ
FGP, σT~k, (3.24)

where in general Pr∆P prevents/slows-down the circulation.

By (3.10) we see that FGP depends on the δ-factor. The Sun’s δ-factor is δ⊙=10−5/2,

and in general the δ-factors for stars are of the order:

δ∼10−8 for red giants,

δ∼10−5 for main-sequence stars,

δ∼10−3 for white dwarfs,

δ∼10−1 for neutron stars,

δ=1 for black holes.

(3.25)
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Hence it is clear that all stars, except black holes, have small δ-factors.

On the other hand, for a small δ-factor, it follows from equations (2.73) and (2.74) that

α,ψ,φ has the order

α∼1+δ+η, η,η′∼δ2, α′∼δ,

ψ∼ rδ, ψ′/ψ∼δ, φ′,φ′′∼δ.

Hence, we deduce from (3.10) that

FGP∼δP for δ≪1.

Thus, in view of (3.25) we conclude that the relativistic effect FGP is negligible on the

stellar interior motion for all stars except supernovae.

Hence the main driving force for stellar circulations is the thermal expansion force

characterized by the σ-factor σ0 in (3.18). Due to δ≪1,σ0 can be approximately given by

σ0=
r2

0mGβ

κ2
A, (3.26)

which plays the similar role as the Rayleigh number Re in the earth’s atmospheric circu-

lation. The value σ0 of (3.26) is large enough to generate thermal convections for main-

sequence stars and red giants.

We remark that the heat source Q is caused not only by nuclear reactions, but also by

the pressure gradient, the density and the gravitational potential energy. Based on the

σ-factor in (3.26), we obtain the following physical conclusions:

1) Main-sequence stars. Based on the dynamic transition theory, by (3.19), we deduce

that there is a critical number σc >0, independent of the parameter σ0 in (3.26), such that

equations (3.22) undergo no dynamic transition if σ0 < σc, and a dynamic transition if

σ0>σc:

σ0−σc

{
<0 there is no stellar circulation,

>0 there exists stellar circulation.
(3.27)

In particular, σc has the same order of magnitude as the first eigenvalue λ1 of the the

following equations in the unit ball B1:

−Pr∆P+∇p=λ1P for x∈B1⊂R
3,

(
Pr,

∂Pθ

∂r
,
∂Pϕ

∂r

)
=0 at r=1,

where ∆P is as in (3.23).

For the main-sequence stars, the σ-factors are much larger than the first eigenvalue

λ1 of (3.28). For example, the Sun consists of hydrogen, and

r0 =7×108m, m=2×1030kg, G=6.7×10−11m3/kg·s2.
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Using the average temperature T=106K, the parameter κ is given by

κ=0.18

(
T

190k

)1.72

10−4m2/s≃50m2/s.

With thermal expansion coefficient β in the order β∼10−4/K, the σ-factor of (3.26) for the

Sun is about

σ⊙∼1030 A [m/K]. (3.28)

Due to nuclear fusion, stars have a constant heat supply, which leads to a higher

boundary temperature gradient A. Referring to (3.28), we conclude that there are always

interior circulations and thermal motion in main-sequence stars and red giants, which

has large σ-factors.

2) Red giants. The nuclear reaction of a red giant stops in its core, but does take place

in the shell layer, which maintains a larger temperature gradient A on the boundary

than the main-sequence phase. Therefore, the greater σ-factor makes the star to expand,

and the increasing radius r0 raises the σ-factor (3.26). The increasingly larger σ-factor

provides a huge power to hurl large quantities of gases into space at very high speed.

3) Neutron stars and pulsars. Neutron stars are different from other stars, which have

bigger δ-factors, higher rotation Ω and lower σ-factor (as the nuclear reaction stops).

Instead of (3.22) the dynamic equations governing neutron stars are

∂P

∂τ
+

1

ρ
(P·∇)P=Pr∆P+

1

κ
FGP−2~Ω×P−∇p+σT~k,

∂T

∂τ
+

1

ρ
(P·∇)T= ∆̃T+Pr,

divP=0.

(3.29)

As the nuclear reaction ceases, the temperature gradient A tends to zero as time t→∞,

and consequently

σ→0 as t→∞. (3.30)

Based on the dynamic transition theory briefly recalled earlier in this section, we de-

rive from (3.29) and (3.30) the following assertions:

• By (3.30), neutron stars will eventually stop convection.

• Due to the high rotation Ω, the convection of (3.29) for the early neutron star is

time periodic, and its period T is inversely proportional to Ω, and its convection

intensity B is proportional to
√

σ−σc, i.e.

period T ≃ C1

Ω
,

intensity B≃C2

√
σ−σc ,

(3.31)
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where σc is the critical value of the transition, and c1,c2 are constants. The properties

of (3.31) explain that the early neutron stars are pulsars, and by (3.30) their pulsing

radiation intensities decay at the rate of
√

σ−σc or
√

kA−σc (k is a constant).

3.3 Dynamics of stars with variable radii

For stars with varying sizes and for supernovae, their radii expand and shrink periodi-

cally. Therefore, the metric in the interior of such stars is as follows:

ds2 =−ψc2dt2+R2(t)
[
αdr2+r2(dθ2+sin2 θdϕ2)

]
,

where ψ=ψ(r,t),α=α(r,t), and R(t) is the scalar factor representing the star radius. For

convenience, we denote

ψ= eu(r,t), α= ev(r,t), R2(t)= ek(t), 0≤ r≤1.

Then the metric is rewritten as

ds2 =−euc2dt2+ek
[
evdr2+r2(dθ2+sin2 θdϕ2)

]
. (3.32)

The stars with variable radii are essentially in radial motion. Hence, the horizontal

momentum (Pθ,Pϕ) is assumed to be zero:

(Pθ,Pϕ)=0. (3.33)

In the following we develop dynamic models for astronomical objects with variable sizes.

1). Gravitational field equations. We recall the gravitational field equations [5]:

Rµν=−8πG

c4
(Tµν−

1

2
gµνT)−(Dµνφ− 1

2
gµνΦ). (3.34)

The nonzero components of the metric (3.32) are

g00=−eu, g11 = ek+v, g22= ekr2, g33 = ekr2sin2θ,

the nonzero components of the Levi-civita connections are

Γ
0
00=

1

2c
ut, Γ

0
11=

1

2c
ev−u(kt+vt), Γ

0
10=

1

2
ur,

Γ
0
22=

r2

2c
e−ukt, Γ

0
33=

r2

2c
e−ukt sin2 θ, Γ

1
00=

1

2
eu−vur

Γ
1
11=

1

2
vr, Γ

1
10=

1

2c
(kt+vt), Γ

1
22=−re−v,

Γ
1
33=−re−v sin2 θ, Γ

2
21=

1

r
, Γ

2
33=sinθcosθ,

Γ
3
31=

1

r
, Γ

3
32=

cosθ

sinθ
,
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and the nonzero components of the Ricci curvature tensor read

R00=
1

2c2

[
3ktt+

3

2
k2

t +vtt+
1

2
v2

t +ktvt−ut(kt+vt)

]
− 1

2
eu−k−v

[
urr+

1

2
u2

r −
1

2
urvr+

2

r
ur

]
,

R11=− ek+v−u

2c2

[
ktt+

3

2
k2

t +vtt+v2
t +3ktvt−

1

2
ut(kt+vt)

]
+

1

2

[
urr+

1

2
u2

r −
1

2
urvr−

2

r
vr

]
,

R22=− r2ek−u

2c2

[
ktt+

3

2
k2

t +
1

2
kt(vt−ut)

]
−e−v

[
ev+

r

2
(kr+vr−ur)−1

]
,

R33=R22sin2θ,

R10=− 1

cr

[
(1+

r

2
ur)kt+vr

]
.

The energy-momentum tensor is in the form

Tµν=




ρ g00g11Prc 0 0
g00g11Prc g11 p 0 0

0 0 g22 p 0
0 0 0 g33 p


,

where ρ is the energy density, Pr is the radial component of the momentum density. Then

direct computations imply that

T= gµνTµν=−ρ+3p, T00−
1

2
g00T=

1

2
(ρ+3p),

T11−
1

2
g11T=

1

2
ek+v(ρ−p), T22−

1

2
g22T=

1

2
ekr2(ρ−p),

T33−
1

2
g33T=(T22−

1

2
g33T)sin2θ, T10−

1

2
g10T= g00g11Prc.

To derive an explicit expression of (3.34), we need to compute the covariant derivatives

of the dual gravitational field φ:

Dµνφ=
∂2φ

∂xµ∂xν
−Γ

λ
µν

∂φ

∂xλ
.

Let φ=φ(r,t). Then we have

D00φ=
1

c2
φtt−

1

2c2
utφt−

1

2
eu−vurφr,

D11φ=φrr−
1

2c2
ev−u(kt+vt)φt−

1

2
vrφr,

D22φ=− r2

2c2
e−uktφt+re−vφr,

D33φ=D22φsin2θ,

D10φ=φrt−
1

2c
(urφt+φrkt+φrvt).
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Thus, the field equations (3.34) are written as

R10=−D1D0φ,

Rkk =−8πG

c4
(Tkk−

1

2
gkkT)−(Dkkφ− 1

2
gkkΦ) for k=0,1,2,

which are expressed as

(
1+

rur

2

)
kt+vt =

8πGr

c2
eu+k+vPr+crφrt−

r

2
(urφt+φrkz+φrvt), (3.35)

3ktt+
3

2
k2

t +vtt+
1

2
v2

t +ktvt−ut(kt+vt)−c2eu−k−v

[
urr+

1

2
u2

r −
1

2
urvr+

2

r
ur

]

=−8πG

c2
(ρ+3p)−c2

(
D00φ+eu−k−vD11φ+

2eu−k

r2
D22φ

)
, (3.36)

ktt+
3

2
k2

t +vtt+v2
t +3ktvt−

1

2
ut(kt+vt)−c2eu−k−v

[
urr+

1

2
u2

r −
1

2
urvr−

2

r
vr

]

=
8πG

c2
eu(ρ−p)+c2(eu−k−vD11φ−D00φ− 2eu−k

r2
D22φ), (3.37)

ktt+
3

2
k2

t +
1

2
kt(vt−ut)+

2c2eu−k−v

r2

[
ev+

r

2
(kr+vr−ur)−1

]

=
8πG

c2
eu(ρ−p)+c2(D00φ−eu−k−vD11φ), (3.38)

The equations (3.35)-(3.38) have seven unknown functions u,v,k,φ,Pr,ρ,p, in which

Pr,ρ,p satisfy the fluid dynamic equations and the equation of state introduced hereafter.

2) Fluid dynamic model. The fluid dynamic model takes the momentum representation

equations coupling the heat equation. Under the condition (3.33) and the radial symme-

try, they are given as follows:

∂Pr

∂τ
+

1

ρ
Pr

∂Pr

∂r
+

1

2

∂v

∂r
P2

r =νe−v

[
1

r2

∂

∂r

(
r2 ∂Pr

∂r

)
− 2

r2
Pr+

1

2

∂

∂r

(
∂v

∂r
Pr

)]

+γe−v ∂

∂r

[
e−v/2

r2

∂

∂r
(r2ev/2Pr)

]
−e−v

[
∂p

∂r
− ρ

2
(1−βT)

∂eu

∂r

]
, (3.39)

∂T

∂τ
+

1

ρ
Pr

∂T

∂r
=

κe−v

r2

∂

∂r

(
r2 ∂T

∂r

)
+Q(r), (3.40)

∂ρ

∂τ
+

e−v/2

r2

∂

∂r
(r2ev/2Pr)=0. (3.41)

3) Equation of state. We know that the gravitational field equations represent the law

of gravity, which essentially dictates the gravity related unknowns: eu,ev,R= ek/2,φ.

The laws for describing the matter field are the motion equation (3.39), the heat equa-

tion (3.40), and the energy conservation equation (3.41). To close the system, one needs to
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supplement an equation of state given by thermal dynamics, which provides a relation

between temperature T, pressure p, and energy density ρ:

f (T,p,ρ)=0, (3.42)

which depends on the underlying physical system.

In summary, we have derived a consistent model coupling the gravitational field

equations, the fluid dynamic equations and the equation of state consists of eight equa-

tions solving for eight unknowns: ψ= eu, α= ev, R= ek/2, φ, Pr, T, p and ρ.

4) Energy conservation formula. From the energy conservation equation (3.41), we can

deduce energy conservation in the following form

R3r2ev/2Pr+
1

4π

d

dt
Er =0 for 0< r<1, (3.43)

where r=1 stands for the boundary R= ek/2 of the star, Er is the total energy in the ball

Br with radius r.

To see this, we first note that the volume differential element of the Riemannian man-

ifold is given by

dV=
√

g11g22g33drdθdϕ= e3k/2r2ev/2sinθdrdθdϕ.

Taking volume integral for (3.41) on Br implies that

d

dt

∫

Br

ρdV+R3
∫ r

0

∂

∂r

(
r2ev/2Pr

)∫ π

0

∫ 2π

0
sinθdθdϕ=0,

which leads to
dMr

dt
+4πR3r2ev/2Pr =0,

and (3.43) follows.

5) Shock wave. As the total energy ER of the star is invariant, we have

d

dt
ER =0.

It follows from (3.43) that

Pr =0 on r=1 (i.e. on the boundary R). (3.44)

On the other hand, the physically sound boundary condition for the star with variable

radius is
∂Pr

∂r
=0 on r=1, (3.45)

which means that there is no energy exchange between the star and its exterior. Thus,

(3.44) and (3.45) imply that there is a shock wave outside the star near the boundary.
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Remark 3.1. Formula (3.43) is very important. In fact, due to the boundary condition

(2.75) and ev/2≃1/
√

1−δ, in the star shell layer, (3.43) can be approximately written as

ρPr =−
√

1−δ

4πR2

d

dt
Mr for R−r>0 small, (3.46)

where δ=2Mr0 G/c2R. This shows that a collapsing supernova is prohibited to shrink into

a black hole (δ= 1). In fact, the strongest evidence for showing that black holes cannot

be created comes from the relativistic effect of (3.10), which provides a huge explosive

power in the star shell layer given by

νδ2

1−δ
Pr →∞ as δ→1 (Pr 6=0). (3.47)

Here Pr is the convective momentum different from the contracting momentum Pr in

(3.46); see Section 4.3 for details.

Remark 3.2. One difficulty encountered in the classical Einstein field equations is that

the number of unknowns is less than the number of equations, and consequently the

coupling between the field equations and fluid dynamic and heat equations become trou-

blesome.

3.4 Mechanism of supernova explosion

In its late stage of life, a massive red giant collapses, leading to a supernova’s huge explo-

sion. It was still a mystery where does the main source of driving force for the explosion

come from, and the current viewpoint, that the blast is caused by the large amount of

neutrinos erupted from the core, is not very convincing.

The stellar dynamic model (2.72)-(2.78) provides an alternative explanation for super-

nova explosions, and we proceed in a few steps as follows:

1). When a very massive red giant completely consumes its central supply of nuclear

fuels, its core collapses. Its radius r0 begins to decrease, and consequently the δ-factor

increases:

r0 decreases ⇒ δ=
2mG

c2r0
increases.

2). The huge mass m and the rapidly reduced radius r0 make the δ-factor approaching

one:

δ→1 as r0→Rs

where Rs=2mG/c2 is the Schwarzschild radius.

3). By (3.46), the shrinking of the star slows down:

Pr ∼
√

1−δ,

and nearly stops as δ→1.
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4). Then the model (3.22) is valid, and the eigenvalue equations of (3.22) are given by

Pr∆P+
1

κ
FGP+σT~k−∇p=βP,

∆̃T+Pr =βT,

divP=0.

(3.48)

The first eigenvalue β depends on the δ-factor, and by (3.10)

β1∼
(

Prδ2

1−δ

)1/2

as δ→1. (3.49)

Based on the transition criterion (3.21), the property (3.49) implies that the star has con-

vection in the shell layer, i.e., the radial circulation momentum flux Pr satisfies

Pr >0 in certain regions of the shell layer.

5). The radial force (3.11) in the shell layer is

fr ≃
2Prδ2

1−δ
Pr →∞ as δ→1 and Pr >0,

which provides a very riving force, resulting in the supernova explosion, as shown in

Figure 3.1.

core

Figure 3.1: Circulation in a shell layer causing blast.

6). Since Pr =0 at r= r0, the radial force of (3.10) is zero:

fr =0 at r= r0.

Here r0 is the radius of the blackhole core. Hence, the supernova’s huge explosion pre-

serves an interior core of smaller radius containing the blackhole core, which yields a
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neutron star. In particular, the huge explosion has no imploding force, and will not gen-

erate a new black hole.

The analysis in the above steps 1)-6) provides the supernova exploding mechanics,

and clearly provide the power resource of the explosion.

In addition, by (3.8) and (3.12) we have

α=
1

1−δr2/r2
0−η(r)

, η(r)=
1

2r

∫ r

0

r2ψ′φ′

αψ
dr for 0≤ r≤ r0.

We can verify that

η(r)>0 for 0< r< r0. (3.50)

In fact, by (3.13) and (3.8) we have

η(0)=0, η(r0)=0. (3.51)

Therefore, η has an extremum r̄ (0< r̄< r) satisfying

η′(r̄)=0.

Let η= 1
r f . Then

η′(r)=0 ⇒ f (r)= ear (a=constant).

Hence, at the extremum r̄,η takes a positive value

η(r̄)=
1

r̄
f (r̄)= ea

>0 for 0< r̄< r0. (3.52)

Thus, (3.50) follows from (3.51) and (3.52).

The fact (3.50) implies that the critical δ-factor δc for the supernova explosion is less

than one, i.e. δc<1.

4 Black Holes

4.1 Geometrical realization of black holes

The concept of black holes was originated from the Einstein general theory of relativ-

ity. Based on the Einstein gravitational field equations, K. Schwarzschild derived in

1916 an exact exterior solution for a spherically symmetrical matter field, and Tolman-

Oppenheimer-Volkoff derived in 1939 an interior solution; see Section 2.3. In both so-

lutions if the radius R of the matter field with mass M is less than or equal to a critical

radius Rs, called the Schwarzschild radius:

R≤Rs=
2MG

c2
, (4.1)
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R

Rs Black hole

Figure 4.1: The spherical region enclosing a matter field with mass M and radius R satisfying (4.1) is called
black hole.

then the matter field generates a singular spherical surface with radius Rs, where time

stops and the spatial metric blows-up; see Figure 4.1. The spherical region with radius

Rs is called the black hole.

We recall again the Schwarzschild metric in the exterior of a black hole written as

ds2 = g00c2dt2+g11dr2+r2(dθ2+sin2 θdϕ2),

g00 =−
(

1− 2MG

c2r

)
, g11=

(
1− 2MG

c2r

)−1

,
(4.2)

where r>Rs when the condition (4.1) is satisfied.

In (4.2) we see that at r=Rs, the time interval is zero, and the spatial metric blows up:

√
−g00dt=

(
1− Rs

r

)1/2

dt=0 at r=Rs, (4.3)

√
g11dr=

(
1− Rs

r

)−1/2

dr=∞ at r=Rs. (4.4)

Physically, the proper time and distance for (4.2) are

proper time=
√
−g00 t,

proper distance=
√

g11dr2+r2dθ2+r2sinθdϕ2.

The coordinate system (t,x) with x=(r,θ,ϕ) represents the projection of the real world

to the coordinate space. Therefore the radial motion speed dr/dt in the projected world

differs from the proper speed vr by a factor
√
−g00/g11, i.e.

dr

dt
=
√
−g00/g11vr.

Hence, the singularity (4.3) and (4.4) means that for an object moving toward to the

boundary of a black hole, its projection speed vanishes:

dr

dt
=0 at r=Rs.
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This implies that any object in the exterior of the black hole cannot pass through its

boundary and enter into the interior. This result can also be best illustrated in the fol-

lowing geometric realization of black holes. Also, in the next subsection we shall give a

proof that a black hole is a closed and innate system.

Mathematically, a Riemannian manifold (M,gij) is called a geometric realization (i.e.

isometric embedding) in RN , if there exists a one to one mapping

~r : M→R
N,

such that

gij =
d~r

dxi
· d~r

dxj
.

The geometric realization provides a “visual” diagram of M, the real world of our Uni-

verse.

In the following we present the geometric realization of a 3D metric space of a black

hole near its boundary. By (4.2), the space metric of a black hole is given by

ds2=

(
1− Rs

r

)−1

dr2+r2(dθ2+sin2θdϕ2) for r>Rs =
2MG

c2
. (4.5)

It is easy to check that a geometric realization of (4.5) is given by~r :M→R4:

~rext =

{
rsinθcos ϕ,rsinθsinϕ,rcosθ,2

√
Rs(r−Rs)

}
for r>Rs. (4.6)

In the interior of a black hole, the Riemannian metric near the boundary is given by

the TOV solution (2.36), and its space metric is in the form

ds2 =

(
1− r2

R2
s

)−1

dr2+r2(dθ2+sin2 θdϕ2) for r<Rs, (4.7)

A geometrical realization of (4.7) is

~r±int=

{
rsinθcos ϕ,rsinθsin ϕ,rcosθ,±

√
R2

s −r2

}
. (4.8)

The diagrams of (4.6) and (4.8) are as shown in Figure 4.2, where case (a) is the embedding

~r+=

{
~rext for r>Rs,

~r+int for r<Rs,

and case (b) is the embedding

~r−=

{
~rext for r>Rs,

~r−int for r<Rs.
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Rs

R3

M

Rs

R3

M

(a) (b)

Figure 4.2: M is the real world with the metric (4.5) for r>Rs and the metric (4.7) for r<Rs, and in the base

space R3 the coordinate system is taken as spherical coordinates (r,θ,ϕ).

The base space marked as R3 in (a) and (b) are taken as the coordinate space (i.e. the

projective space), and the surfaces marked by M represent the real world which are sep-

arated into two closed parts by the spherical surface of radius Rs: the black hole (r<Rs)
and the exterior world (r>Rs).

In particular, the geometric realization of (4.7) for a black hole clearly manifests that

the real world in the black hole is a hemisphere with radius Rs embedded in R4; see

Figure 4.2(a):

x2
1+x2

2+x2
3+x2

4 =R2
s for 0≤|x4|≤Rs,

where

(x1,x2,x3,x4)=

(
rsinθcos ϕ, rsinθsin ϕ, rcosθ, ±

√
R2

s −r2

)
.

We remark that the singularity of M at r=Rs, where the tangent space of M is per-

pendicular to the coordinate space R3, is essential, and cannot be removed by any coordi-

nate transformations. The coordinate transformations such as those given by Eddington

and Kruskal possess the singularity as well, and, consequently, cannot be used as the

coordinate systems for the metrics (4.5) and (4.7).

4.2 Blackhole theorem

The main objective of this section is to prove the following blackhole theorem.

Theorem 4.1 (Blackhole Theorem). Assume the validity of the Einstein theory of general rela-

tivity, then the following assertions hold true:

1) black holes are closed: matters can neither enter nor leave their interiors,

2) black holes are innate: they are neither born to explosion of cosmic objects, nor born to

gravitational collapsing,
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3) black holes are filled and incompressible, and if the matter field is non-homogeneously dis-

tributed in a black hole, then there must be sub-blackholes in the interior of the black hole.

We prove this theorem in three steps as follows.

Step 1. Closedness of black holes. First, it is classical that all matter, including photons,

cannot escape from a black hole when they are within the Schwarzschild radius.

Step 2. We have demonstrated that any object in the exterior of the black hole cannot

pass through its boundary and enter into the interior. Now we see this in a different view,

and we show that all external energy cannot enter into the interior of a black hole. By the

energy-momentum conservation, we have

∂E

∂τ
+ div P=0, (4.9)

where E and P are the energy and momentum densities. Take the volume integral of (4.9)

on B={x∈R3 | Rs < |x|<R1}:

∫

B

[
∂E

∂τ
+ divP

]
dΩ=0, dΩ=

√
gdrdθdϕ, (4.10)

where divP is as in (2.54), and

g= det(gij)= g11g22g33=αr4sin2 θ, α=

(
1− 2MG

c2r

)−1

.

By the Gauss formula, we have

∫

B
divPdΩ=

∫

SR1

√
α(R1)PrdSR1

− lim
r→Rs

∫

Sr

√
αPrdSr.

Here Sr ={x∈R3 | |x|= r}. In view of (4.10) we deduce that the total energy change

∫

B

∂E

∂τ
dΩ= lim

r→Rs

∫

Sr

√
αPrdSr−

√
α(R1)

∫

SR1

PrdSR1
. (4.11)

The equality (4.11) can be rewritten as

lim
r→Rs

∫

Sr

PrdSr = lim
r→Rs

1√
α(r)

[∫

B

∂E

∂τ
dΩ+

√
α(R1)

∫

SR1

PrdSR1

]
=0. (4.12)

This together with no escaping of particles from the interior of the black hole shows that

lim
r→R+

s

Pr =0.
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In other words, there is no energy flux Pr on the Schwarzschild surface, and we have

shown that no external energy can enter into a black hole.

In conclusion, we have shown that black holes are closed: no energy can penetrate

the Schwarzschild surface.

Step 3. Innateness of black holes. The explosion mechanism introduced in Subsection

3.4 clearly manifests that any massive object cannot generate a new black hole. In other

words, we conclude that black holes can neither be created nor be annihilated, and the

total number of black holes in the Universe is conserved.

Step 4. Assertion 3) follows by applying conclusion (6.40) and the fact that sub black-

holes are incompressible. The theorem is therefore proved.

We remark again that the singularity on the boundary of black holes is essential and

cannot be removed by any differentiable coordinate transformation with differentiable

inverse. The Eddington and Kruskal coordinate transformations are non-differentiable,

and are not valid.

Remark 4.2. The gravitational force F generated by a black hole in its exterior is given by

F=
mc2

2
∇g00 =−mg11 ∂ψ

∂r
,

where ψ is the gravitational potential. By (4.2) we have the following gravitational force:

F=−
(

1− 2MG

c2r

)
mMG

r2
. (4.13)

Consequently, on the boundary of a black hole, the gravitational force is zero:

F=0 at r=Rs.

4.3 Critical δ-factor

Black holes are a theoretical outcome. Although we cannot see them directly due to their

invisibility, they are, however, strong evidences from many astronomical observations

and theoretic studies.

In the following, we first briefly recall the Chandrasekhar limit of electron degeneracy

pressure and the Oppenheimer limit of neutron degeneracy pressure; then we present

new criterions to classify pure black holes, which do not contain other black holes in

their interior, into two types: the quark and weakton black holes, by using the δ-factor.

1) Electron and neutron degeneracy pressures. Classically we know that there are two

kinds of pressure to resist the gravitational pressure, called the electron degeneracy pres-

sure and the neutron degeneracy pressure. These pressures prevent stars from gravita-

tional collapsing with the following mass relation:

m<

{
1.4M⊙ for electron pressure,

3M⊙ for neutron pressure.
(4.14)
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Hence, by (4.14), we usually think that a dead star is a white dwarf if its mass m<1.4M⊙,

and is a neutron star if its mass m<3M⊙. However, if the dead star has mass m>3M⊙,

then it is regarded as a black hole. Hence the neutron pressure gradient is thought to be

a final defense to prevent a star from collapsing into a black hole. Thus, 3M⊙ becomes a

critical mass to determine the possible formation of a black hole.

2) Interaction potential pressure. However, thanks to the strong and weak interaction

potentials established in [4, 6], there still exist three kinds of potential pressures given by

neutron potential, quark potential, weakton potential. (4.15)

These three potential pressures maintain three types of astronomical bodies:

neutron stars,

quark black holes if they exist,

weakton black holes if they exist.

(4.16)

We are now in position to discuss these potential pressures. By the theory of elemen-

tary particles, a neutron is made up of three quarks n = uud, and u,d quarks are made

up of three weaktons as u = w∗w1w̄1,d = w∗w1w2. The three levels of particles possess

different potentials distinguished by their interaction charges:

neutron charge gn =3

(
ρw

ρn

)3

gs,

quark charge gq =

(
ρw

ρq

)3

gs,

weakton weak charge gw,

(4.17)

where ρn,ρq,ρw are the radii of neutron, quark and weakton.

Let g be a specific charge in (4.17). Then by the interaction potentials obtained in [6],

the particle with charge g has a repulsive force:

f =
g2

r2
.

The force acts on particle’s cross section with area S=πr2, which yields the interaction

potential pressure as

P=
f

S
=

g2

πr4
. (4.18)

Let each ball Br with radius r contain only one particle. Then the mass density ρ is given

by

ρ=
3m0

4πr3
, (4.19)
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where m0 is the particle mass. By the uncertainty relation, in Br the particle energy ε0 is

ε0=
h̄

2t
,

and t= r/v, where v is the particle velocity. Replacing v by the speed of light c, we have

ε0=
h̄c

2r
.

By m0= ε0/c2, the density ρ of (4.19) is written as

ρ=
3h̄

8πcr4
or equivalently r4=

3h̄

8πcρ
. (4.20)

Inserting r4 of (4.20) into (4.18), we derive the interaction potential pressure P in the form

P=
8cρg2

3h̄
. (4.21)

3) Critical δ-factors. It is known that the central pressure of a star with mass m and

radius r0 can be expressed as

PM=
Gm2

r4
0

=
2πc2

3
ρδ, δ=

2mG

c2r0
, (4.22)

where δ is the δ-factor.

We infer from (4.21) and (4.22) the critical δ-factor as

δc=
4

π

g2

h̄c
, (4.23)

where g is one of the interaction charges in (4.17).

The critical δ-factor in (4.23) provides criterions for the three types of astronomical

bodies of (4.16).

4) Physical significance of δc. It is clear that for a star with m>1.4M⊙ if

δ<
4

π

g2
n

h̄c
, (4.24)

then the neutron potential pressure Pn in (4.21) is greater than the star pressure PM in

(4.22):

Pn >PM.

In this case, neutrons in the star cannot be crushed into quarks. Hence, (4.24) should be a

criterion to determine if the body is a neutron star. It is known that

g2
n ∼ h̄c.
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Thus, we take

g2
n =

π

4
h̄c, (4.25)

and (4.24) is just the black hole criterion.

If the δ-factor satisfies that
4

π

g2
n

h̄c
<δ<

4

π

g2
q

h̄c
, (4.26)

then the neutrons will be crushed to become quarks and gluons. The equality (4.25)

shows that the star satisfying (4.26) must be a black hole which is composed of quarks

and gluons, and is called quark black hole.

If δ satisfies
4

π

g2
q

h̄c
<δ<

4

π

g2
w

h̄c
, (4.27)

then the quarks are crushed into weaktons, and the body is called weakton black hole.

In summary, we infer from (4.24), (4.26) and (4.27) the following conclusions:

a body=





a neutron star if δ<δc
n and m>1.4M⊙,

a quark black hole if δc
n <δ<δc

q,

a weakton black hole if δc
q <δ<δc

w,

(4.28)

where

δc
j =

4

π

g2
j

h̄c
for j=n,q,w.

5) Upper limit of the radius. Weaktons are elementary particles, which cannot be crushed.

Therefore, there is no star with δ-factor greater than δc
w. Thus there exists an upper limit

for the radius rc for astronomical bodies with mass m, determined by

2MG

c2rc
=δc

w.

Namely, the upper limit of the radius rc reads

rc=
πmG

2c2

h̄c

g2
w

. (4.29)

4.4 Origin of stars and galaxies

The closeness and innateness of black holes provide an excellent explanation for the ori-

gin of planets, stars and galaxies.

In fact, all black holes are inherent. Namely, black holes exist at the very beginning

of the Universe. During the evolution of the Universe, each black hole forms a core and

adsorbs a ball of gases around it. The globes of gases eventually evolve into planets, stars
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and galaxy nuclei, according to the radii or masses of the inner cores of black holes. Of

course, it is possible that several black holes can bound together to form a core of a bulk

of gases.

Due to the closedness of black holes, planets, stars and galaxy nuclei are stable, which

cannot be absorbed into the inner cores of black holes and vanish.

1) Jeans theory on the origin of stars and galaxies. In the beginning of the twentieth

century, J. Jeans presented a general theory for the formation of galaxies and stars. He

thought that the Universe in the beginning was filled with chaotic gas, and various astro-

nomical objects were formed in succession by a process of gas decomposition into bulks

of clouds, consequently forming galaxies, stars, and planets.

According to the Jeans theory, a ball of clouds with homogeneous density ρ can be

held together only if

V+K≤0, (4.30)

where V is the total gravitational potential energy, and K is the total kinetic energy of all

particles. The potential energy V is

V=−
∫ R

0

GMr

r
×4πr2ρdr=−3GM2

5R
, (4.31)

where M is the mass of the cloud, Mr =4πr3ρ/3, and R is the radius. The kinetic energy

K is expressed as the sum of thermal kinetic energies of all particles:

K=
3

2
NkT,

where N is the particle number, T is the temperature, and k is the Boltzmann constant.

Assume that all particles have the same mass m, then N=M/m, and we have

K=
3M

2m
kT. (4.32)

Thus, by (4.30)-(4.32) we obtain that

GM

R
≥ 5

2m
kT. (4.33)

The inequality (4.33) is called the Jeans condition.

2) Masses of astronomical objects. The Jeans condition (4.33) guarantees only the gaseous

clouds being held together, and does not imply that the gas clouds can contract to form

an astronomical object. However, a black hole must attract the nebulae around it to form

a compact body.

We consider the mass relation between an astronomical object and its black hole core.

The mass M of the object is

M=Mb+M1, (4.34)
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where Mb is the mass of the black hole, and M1 is the mass of the material attracted by

this black hole. The total binding potential energy V of this object is given by

V=−
∫ R

Rs

GMr

r
×4πr2ρdr, (4.35)

where R is the object radius, Rs is the radius of the black hole, ρ is the mass density

outside the core, and

Mr =Mb+
∫ r

Rs

4πr2ρdr. (4.36)

Since Rs≪R, we take Rs=0 in the integrals (4.35) and (4.36). We assume that the density

ρ is a constant. Then, it follows from (4.35) and (4.36) that

V=−4πGρ
∫ R

0

[
Mbr+

4π

3
ρr4

]
dr=−4πGρ

(
MbR2

2
+

4π

3×5
ρR5

)
.

By ρ=M1/ 4
3 πR3 and Mb=M−M1, we have

V=−G

R

(
3

2
MM1−

9

10
M2

1

)
. (4.37)

The stability of the object requires that −V takes its maximum at some M1 such that

dV/dM1 =0. Hence we derive from (4.37) that

M1=
5

6
M, Mb =

1

6
M. (4.38)

The relation (4.38) means that a black hole with mass Mb can form an astronomical object

with mass M=6Mb.

3) Relation between radius and temperature. A black hole with mass Mb determines the

mass M of the corresponding astronomical system: M=6Mb. Then, by the Jeans relation

(4.33), the radius R and average temperature T satisfy

T=
2×6GmMb

5kR
(4.39)

where T is expressed as

T=
3

4πR3

∫

BR

τ(x)dx,

where BR is the ball of this system, and τ(x) is the temperature distribution. Let τ=τ(r)
depend only on r, then we have

T=
3

R3

∫ R

0
r2τ(r)dr. (4.40)
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4) Solar system. For the Sun, M=2×1030kg and R=7×108m. Hence the mass of the

solar black hole core is about

M⊙b=
1

3
×1030kg,

and the average temperature has an upper limit:

T=
4

5
× 6.7×10−11m3/kg·s2×1030kg×1.7×10−27kg

1.4×10−24kg·m2/s2 ·K×7×108m
≃108K.

For the earth, M=6×1024kg,R=6.4×106m. Thus we have

Meb=1024kg, T=3.3×104.

5) The radii of the solar and earth’s black hole cores. The radius of solar black hole is given

by

R⊙
s =500 m,

and the radius of black hole of the earth is as

Re
s =

3

2
cm.

5 Galaxies

5.1 Galaxy dynamics

Galaxies are mainly either spiral or elliptical. Each galaxy possesses a compact core,

known as galactic nucleus, which is supermassive and spherical-shaped. Thus, the galac-

tic dynamic model is defined in an annular domain:

r0< r< r1,

where r0 is the radius of galaxy nucleus and r1 the galaxy radius. In the following we

develop models for spiral and elliptical galaxies, and provide their basic consequences

on galactic dynamics.

1) Spiral galaxies. Spiral galaxies are disc-shaped, as shown in Figure 5.1. We model

the galaxy in a disc domain as

D={x∈R
2 | r0< |x|< r1}, (5.1)

for which the spherical coordinates reduce to the polar coordinate system (ϕ,r):

(θ,ϕ,r)=
(π

2
,ϕ,r

)
for 0≤ ϕ≤2π, r0< r< r1. (5.2)
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galaxy nucleus

galaxy disk

Figure 5.1: A schematic diagram of spiral galaxy.

The metric satisfying the gravitational field equations (2.56) of the galaxy nucleus is the

Schwarzschild solution:

g00=−
(

1+
2

c2
ψ

)
, ψ=−M0G

r
,

g11=α(r)=

(
1− δr0

r

)−1

, δ=
2M0G

c2r0
,

(5.3)

where r0< r< r1 and M0 is the mass of galactic nucleus.

With (5.2) and (5.3), the 2D fluid equations (2.59)-(2.62) are written as

∂Pϕ

∂τ
+

1

ρ
(P·∇)Pϕ=ν∆Pϕ−

1

r

∂p

∂ϕ
,

∂Pr

∂τ
+

1

ρ
(P·∇)Pr =ν∆Pr−

1

α

∂p

∂r
−ρ(1−βT)

Mr G

αr2
,

∂T

∂τ
+

1

ρ
(P·∇)T=κ∆̃T+Q,

∂ρ

∂τ
+divP=0,

(5.4)

supplemented with boundary conditions:

Pϕ(r0)= ζ0, Pr(r0)=0, T(r0)=T0,

Pϕ(r1)= ζ1, Pr(r1)=0, T(r1)=T1.
(5.5)

Here α is as in (5.3), and Mr is the total mass in the ball Br.

2) Elliptical galaxies. Elliptical galaxies are spherically-shaped, defined in a spherical-

annular domain, as shown in Figure 5.2:

Ω={x∈R
3 | r0< |x|< r1} (5.6)
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galaxy nucleus

Figure 5.2: A schematic diagram of elliptical galaxy.

The metric is as in (5.3), and the corresponding fluid equations (2.59)-(2.62) are in the

form:
∂P

∂τ
+

1

ρ
(P·∇)P=ν∆P−∇p−ρ(1−βT)

M0G

αr2
~k,

∂T

∂τ
+

1

ρ
(P·∇)T=κ∆̃T+Q,

∂ρ

∂τ
+div P=0,

(5.7)

supplemented with the physically sound conditions:

Pr =0,
∂Pθ

∂r
=0,

∂Pϕ

∂r
=0 at r= r0,r1,

T(r0)=T0, T(r1)=T1.

(5.8)

3) Galaxy dynamics. Based on both models (5.4)-(5.5) and (5.7)-(5.8), we outline below

the large scale dynamics of both spiral and elliptical galaxies.

Let the models be abstractly written in the following form

du

dt
=F(u,ρ), (5.9)

where u=(P,T,p) is the unknown function, and ρ is the initial density distribution, which

is used as a control parameter representing different physical conditions.

First, we consider the stationary equation of (5.9) given by

F(u,ρ)=0. (5.10)

Let u0 be a solution of (5.10), and consider the deviation from u0 as

u=v+u0.

Thus, (5.9) becomes the following form

dv

dt
= Lλv+G(v,λ,ρ), (5.11)
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where λ=(δ,Re), and the δ-factor and the Rayleigh number are defined by

δ=
2M0G

c2r0
, Re=

M0Gr0r1β

κν

T0−T1

r1−r0
. (5.12)

The Lλ is the derivative operator (i.e. the linearized operator) of F(u,p) at u0:

Lλ=DF(u0,ρ),

and G is the higher order operator.

Then, we consider the dynamic transition of (5.11). Let ṽλ be a stable transition solu-

tion of (5.11). Then the function

ũ=u0+ ṽλ (5.13)

provides the physical information of the galaxy.

5.2 Spiral galaxies

Spiral galaxies are divided into two types: normal spirals (S-type) and barred spirals (SB-

type). We are now ready to discuss these two sequences of galaxies by using the spiral

galaxy model (5.4)-(5.5).

Let the stationary solutions of (5.4)-(5.5) be independent of ϕ, given by

Pr =0, Pϕ= P̃ϕ(r), T= T̃(r), p= p̃(r).

The heat source is approximatively taken as Q=0. Then the stationary equations of (5.4)-

(5.5) are

rP̃′′
ϕ +2P̃′

ϕ−
1

r
P̃ϕ−

δr0

r

(
rP̃′′

ϕ +
3

2
P̃′

ϕ−
P̃ϕ

2r

)
=0,

∂p̃

∂r
=

1

rρ
P̃2

ϕ−
1

r2
ρ(1−βT̃)MrG,

d

dr
(r2 dT̃

dr
)=0,

P̃ϕ(r0)= ζ0, P̃ϕ(r1)= ζ1, T̃(r0)=T0, T̃(r1)=T1.

(5.14)

The first equation of (5.14) is an elliptic boundary value problem, which has a unique

solution Pϕ. Since δr0/r is small in the domain (5.1), the first equation of (5.14) can be

approximated by

P̃′′
ϕ +

2

r
P′

ϕ−
1

r2
P̃ϕ=0,

which has an analytic solution as

P̃ϕ=β1rk1 +β2rk2 , k1 =

√
5−1

2
, k2 =−

√
5+1

2
. (5.15)
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By the boundary conditions in (5.14), we obtain that

β1=
rk2

0 ζ1−rk2
1 ζ0

rk1
1 rk2

0 −rk1
0 rk2

1

, β2=
rk1

1 ζ0−rk1
0 ζ1

rk1
1 rk2

0 −rk1
0 rk2

1

. (5.16)

Thus we derive the solution of (5.14) as

P̃ϕ, T̃=T0+
T0−T1

r1−r0
r1(

r0

r
−1), p̃=

∫ [ P̃2
ϕ

rρ
− ρG

r2
(1−βT̃)Mr

]
dr.

Make the translation

Pr →Pr, Pϕ→Pϕ+ P̃ϕ, T→T+ T̃, p→ p+ p̃;

then the equations (5.4) and boundary conditions (5.5) become

∂Pϕ

∂τ
+

1

ρ
(P·∇)Pϕ=ν∆Pϕ−(

P̃ϕ

r
+

dP̃ϕ

dr
)Pr−

1

r

∂p

∂ϕ
,

∂Pr

∂τ
+

1

ρ
(P·∇)Pr =ν∆Pr+

2P̃ϕ

αr
Pϕ+

ρβMrG

αr2
T− 1

α

∂p

∂r
,

∂T

∂τ
+

1

ρ
(P·∇)T=κ∆̃T+

r0r1

ρr2
γPr−

1

ρr
P̃ϕ

∂T

∂ϕ
,

div P=0,

P=0, T=0 at r= r0,r1,

(5.17)

where r=(T0−T1)/(r1−r0).
The eigenvalue equations of (5.17) are given by

−∆Pϕ+
1

ν
(

P̃ϕ

r
+

dP̃ϕ

dr
)Pr+

1

rν

∂p

∂ϕ
=λPϕ,

−∆Pr−
2P̃ϕ

ανr
Pϕ−

ρβMrG

ανr2
T+

1

αν

∂p

∂r
=λPr,

−∆T+
1

ρr
P̃ϕ

∂T

∂ϕ
− r0r1γ

κρr2
Pr =λT,

div P=0,

P=0, T=0 at r= r0,r1.

(5.18)

The eigenvalues λ of (5.18) are discrete (not counting multiplicity):

λ1>λ2> ···>λk > ··· , λk →−∞ as k→∞.

The first eigenvalue λ1 and first eigenfunctions

Φ=(P0
ϕ,P0

r ,T0) (5.19)
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dictate the dynamic behaviors of spiral galaxies, which are determined by the physical

parameters:

ζ0,ζ1,r0,r1,κ,ν,β,γ=
T0−T1

r1−r0
, δ=

2M0G

c2r0
, Mr =M0+4π

∫ r1

r0

r2ρdr. (5.20)

Based on the dynamic transition theory in [3], we have the following physical conclu-

sions:

• If the parameters in (5.20) make the first eigenvalue λ1<0, then the spiral galaxy is

of S0-type.

• If λ1>0, then the galaxy is one of the types Sa,Sb,Sc,SBa,SBb,SBc, depending on the

structure of (P0
ϕ,P0

r ) in (5.19).

• Let λ1 > 0 and the first eigenvector (P0
ϕ,P0

r ) of (5.19) have the vortex structure as

shown in Figure 5.3. Then the number of spiral arms of the galaxy is k/2, where k

is the vortex number of (P0
ϕ,P0

r ). Hence, if k=2, the galaxy is of the SBc-type.

Figure 5.3: The vortex structure of the first eigenvector (P0
ϕ,P0

r ).

The reason behind the number of spiral arms being k/2 is as follows. First the number

of vortices in Figure 5.3 is even, and each pair of vortices have reversed orientations.

Second, if the orientation of a vortex matches that of the stationary solution Pϕ(r) of

(5.14), then the superposition of Pϕ(r) and P0
ϕ of (5.19) gives rise to an arm; otherwise, the

counteraction of Pϕ(r) and P0
ϕ with reversed orientations reduces the energy momentum

density, and the region becomes nearly void.
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Remark 5.1. There are three terms in (5.18), which may generate the transition of (5.17):

F1=

(
0,− k1T

r2
,− k2Pr

r2

)
, k2=

ρβMrG

αν
, k2=

r0r1γ

κρ
,

F2=

(
1

ν

(
P̃ϕ

r
+

dP̃ϕ

dr

)
Pr,−

2P̃ϕ

ανr
Pϕ,0

)
,

F3=

(
− 1

2α2r

dα

dr

∂

∂r
(rPϕ),

1

2α

∂

∂r
(

1

α

dα

dr
Pr),0

)
.

The term F1 corresponds to the Rayleigh-Bénard convection with the Rayleigh number

R= k1k2 =
βMrGr0r1γ

ανκ
,

the term F2 corresponds to the Taylor rotation which causes the instability of the basic

flow (Pϕ,Pr)= (P̃ϕ,0), and F3 is the relativistic effect which only plays a role in the case

where δ≃1.

5.3 Active galactic nuclei (AGN) and jets

The black hole core of a galaxy attracts a large amounts of gases around it, forming a

galactic nucleus. The mass of a galactic nucleus is usually in the range

105 M⊙∼109M⊙. (5.21)

Galactic nuclei are divided into two types: normal and active. In particular, an active

galactic nucleus emits huge quantities of energy, called jets. We focus in this section the

mechanism of AGN jets.

1) Model for AGN. The domain of an galactic nucleus is a spherical annulus:

B=
{

x∈R
3 | Rs< |x|<R1

}
, (5.22)

where Rs is the Schwarzschild radius of the black hole core, and R1 is the radius of the

galaxy nucleus.

The model governing the galaxy nucleus is given by (5.7)-(5.8), defined in the domain

(5.22) with boundary conditions:

Pr =0,
∂Pθ

∂r
=0, Pϕ=P0, T=T0 for r=Rs,

Pr =0,
∂Pθ

∂r
=0, Pϕ=P1, T=T1 for r=R1.

(5.23)

Let the stationary solution of the model be as

Pθ =0, Pr =0, Pϕ=Pϕ(r,θ),
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and p,ρ,T be independent of ϕ. Then the stationary equations for the four unknown

functions Pϕ,T,p,ρ are in the form

∂p

∂θ
=−1

ρ

cosθ

sinθ
P2

ϕ,

∂p

∂r
=

1

ρr
P2

ϕ−ρ(1−βT)
MbG

r2
,

−ν∆̃Pϕ+
Pϕ

r2sinθ
+

1

2α2r

dα

dr

∂

∂r
(rPϕ)=0,

− κ

αr2

∂

∂r
(r2 ∂

∂r
)T=Q(r),

(5.24)

where Mb is the mass of the black hole core, Q is the heat source generated by the nuclear

burning, and

∆̃=
1

r2sinθ

∂

∂θ
(sinθ

∂

∂θ
)+

1

αr2

∂

∂r
(r2 ∂

∂r
),

α=

(
1− 2MbG

c2r

)−1

.

The boundary conditions of (5.23) become

Pϕ(Rs)=RsΩ0, Pϕ(R1)=R1Ω1, T(Rs)=T0, T(R1)=T1, (5.25)

where Ω0,Ω1 only depend on θ,T0,T1 are constants.

Make the translation

Pr →Pr, Pθ →Pθ, Pϕ→Pϕ+ P̃ϕ, T→T+ T̃, p→ p+ p̃,

where (P̃ϕ,T̃, p̃,ρ) is the solution of (5.24)-(5.25). Then the equations (5.7) are rewritten as

∂Pθ

∂τ
+

1

ρ
(P·∇)Pθ =ν∆Pθ−

P̃ϕ

ρrsinθ

∂Pθ

∂ϕ
+

2cosθP̃ϕ

ρrsinθ
Pϕ−

1

r

∂p

∂θ
,

∂Pϕ

∂τ
+

1

ρ
(P·∇)Pϕ=ν∆Pϕ−

1

ρr

∂P̃ϕ

∂θ
Pθ−

P̃ϕ

ρrsinθ

∂Pϕ

∂ϕ
− 1

ρ

∂P̃ϕ

∂r
Pr

− P̃ϕ

ρr
Pr−

cosθP̃ϕ

ρrsinθ
Pθ−

1

rsinθ

∂p

∂ϕ
,

∂Pr

∂τ
+

1

ρ
(P·∇)Pr =ν∆Pr−

P̃ϕ

ρrsinθ

∂Pr

∂ϕ
+

2P̃ϕ

ραr
Pϕ−

1

α

∂p

∂r
+βρ

MbG

αr2
T,

∂T

∂τ
+

1

ρ
(P·∇)T=κ∆̃T− P̃ϕ

ρrsinθ

∂T

∂ϕ
− 1

ρ

dT̃

dr
Pr,

divP=0,

(5.26)
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with the boundary conditions

Pr =0, Pϕ=0,
∂Pθ

∂r
=0, T=0 at r=Rs,R1. (5.27)

2) Taylor instability. By the conservation of angular momentum and R1 ≫Rs, the an-

gular momentums Ω0 and Ω1 in (5.25) satisfy that

Ω0≫Ω1, (5.28)

This property leads to the instability of the rotating flow represented by the stationary

solution:

(Pr,Pθ,Pϕ)=(0,0,P̃ϕ), (5.29)

which is similar to the Taylor-Couette flow in a rotating cylinder. The rotating instabil-

ity can generate a circulation in the galactic nucleus, as the Taylor vortices in a rotating

cylinder, as shown in Figure 5.4. The instability is caused by the force F=(Fr,Fθ,Fϕ,T) in

the equations of (5.26) given by

Fr =
2P̃ϕ

ραr
Pϕ−

P̃ϕ

ρrsinθ

∂Pr

∂ϕ
,

Fθ =
2cosθP̃ϕ

ρrsinθ
Pϕ−

P̃ϕ

ρrsinθ

∂Pθ

∂ϕ
,

Fϕ=−1

ρ

(
P̃ϕ

r
+

∂P̃ϕ

∂r

)
Pr−

1

ρr

(
cosθ

sinθ
P̃ϕ+

∂P̃ϕ

∂θ

)
Pθ−

P̃ϕ

ρrsinθ

∂Pϕ

∂ϕ
,

T=− P̃ϕ

ρrsinθ

∂T

∂θ
.

(5.30)

3) Rayleigh-Bénard instability. Due to the nuclear reaction (fusion and fission) and the

large pressure gradient, the galactic nucleus possesses a very large temperature gradient

in (5.25) as

DT=T0−T1, (5.31)

which yields the following thermal expansion force in (5.26), and gives rise to the Rayleigh-

Bénard convection:

Fr =βρ
MbG

αr2
T, T=

1

ρ

dT̃

dr
Pr. (5.32)

4) Instability due to the gravitational effects. Similar to (3.3), there is a radial force in the

term ν∆ur of the third equation of (5.26):

Fr =
ν

2α

∂

∂r

(
1

α

dα

dr
Pr

)
, (5.33)
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where

α=(1−Rs/r)−1, Rs< r<R1. (5.34)

In (5.33) and (5.34), we see the term

fr =
ν

1−Rs/r

R2
s

r4
Pr, (5.35)

which has the property that

fr =

{
+∞ for Pr >0 at r=Rs,

−∞ for Pr <0 at r=Rs.
(5.36)

It is the force (5.36) that not only causes the instability of the basic flow (5.29), but also

generates jets of the galaxy nucleus.

5) Latitudinal circulation. The above three types of forces: the rotating force (5.30), the

thermal expansion force (5.32), and the gravitational effect (5.35), cause the instability

of the basic flow (5.29) and lead to the latitudinal circulation of the galactic nucleus, as

shown in Figure 5.4.

Figure 5.4: The latitudinal circulation with k=2 cells.

6) Jets and accretions. Each circulation cell has an exit as shown in Figure 5.5, where the

circulating gas is pushed up by the radial force (5.35)-(5.36), and erupts leading to a jet.

The cell has an entrance as shown in Figure 5.5, where the exterior gas is pulled into the

nucleus, is cyclo-accelerated by the force (5.35), goes down to the inner boundary r=Rs,

and then is pushed by Fθ of (5.30) toward to the exit. Thus the circulation cells form jets

in their exits and accretions in their entrances. In Figure 5.6(a), we see that there is a jet

in the latitudinal circulation with k= 1 cell, and in Figure 5.6(b) there are two jets in the

circulation with k = 2 cells in its south and north poles, and an accretion disk near its

equator.
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exit

entrance
entrance

Figure 5.5:

Jet

Accretion

(a) (b)

Accretion

Jet

Jet

Figure 5.6: (a) A jet in the latitudinal circulation with k=1 cell, two jets in the latitudinal circulation with k=2
cells.

7) Condition for jet generation. The main power to generate jets comes from the gravi-

tational effect of (5.35)-(5.36) by the black hole. The radial momentum Pr in (5.35) is the

bifurcated solution of (5.26), which can be expressed as

Pr =R2
s Qr,

where Qr is independent of Rs. Thus, the radial force (5.35) near r=Rs is approximatively

written as

fr =
ν

1−Rs/r
QRs , r=Rs+ r̃ for 0< r̃≪Rs. (5.37)

Let fE be the lower limit of the effective force, which is defined as that the total radial

force Fr in the third equation of (5.26) is positive provided fr > fE:

Fr >0 if fr > fE.

Let RE be the effective distance:

fr > fE if Rs< r<Rs+RE.
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Then, it follows from (5.37) that

RE= kRs (k=νQRs / fE). (5.38)

It is clear that there is a critical distance Rc such that

a jet forms if RE>Rc or Rs> k−1Rc,

no jet forms if RE<Rc or Rs< k−1Rc.
(5.39)

The criterion (5.39) is the condition for jet generation.

The condition (5.39) can be equivalently rewritten as that there is a critical mass Mc

such that the galactic nucleus is active if its mass M is bigger than Mc, i.e. M> Mc. By

(5.21), we have

105 M⊙<Mc or 106M⊙<Mc.

Remark 5.2. The jets shown in Figures 5.4 and 5.5 are column-shaped. If the cell number

k≥ 3 for the latitudinal circulation of galaxy nucleus, then there are jets which are disc-

shaped. We don’t know if there exist such galaxy nuclei which have the disc-shaped jets

in the Universe. Theoretically, it appears to be possible.

Remark 5.3. Galactic nucleus are made up of plasm. The precise description of AGN jets

requires to take into consideration of the magnetic effect in the modeling. However the

essential mechanism does not change and an explosive magnetic energy as in (5.37) will

contribute to the supernovae explosion.

6 The Universe

6.1 Classical theory of the Universe

In this section, we recall some basic aspects of modern cosmology, including the Hubble

Law, the expanding universe, and the origin of our Universe, together with their experi-

mental justifications.

The Hubble Law. In 1929, American astronomer Edwin Hubble discovered an approx-

imatively linear relation between the recession velocity v and the distance R of remote

galaxies, which is now called the Hubble Law:

v=HR, (6.1)

where H is called the Hubble constant, depends on time, and its present-time value is

H=70 km/s·Mpc, Mpc=106pc (1 pc=3.26 ly). (6.2)

Formula (6.1) implies that the farther away the galaxy is from our galaxy, the greater

its velocity is.
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The Newton cosmology. The Newton cosmology is based on the Newton Gravitational

Law. By Cosmological Principle [8], the universe is spherically symmetric. For any refer-

ence point p∈M, the motion equation of an object with distance r from p is

d2r

dt2
=−GM(r)

r2
, (6.3)

where M(r)=4πr3ρ/3, and ρ is the mass density. Thus, (6.3) can be rewritten as follows

r′′=−4

3
πGrρ. (6.4)

Make the nondimensional

r=R(t)r0,

where R(t) is the scalar factor, which is the same as in the FLRW metric [5]. Let ρ0 be the

density at R=1. Then we have

ρ=ρ0/R3. (6.5)

Thus, equation (6.4) is expressed as

R′′=−4πG

3

ρ0

R2
, (6.6)

which is the dynamic equation of Newtonian cosmology.

Multiplying both sides of (6.6) by R′ we have

d

dt
(Ṙ2− 8πG

3

ρ0

r
)=0.

Hence, (6.6) is equivalent to the equation

Ṙ2=
8πG

3

ρ0

R
−κ, (6.7)

where κ is a constant, and we shall see that κ= kc2, and k=−1,0, or 1.

The Friedmann cosmology. The nonzero components of the Friedmann metric are

g00 =−1, g11=
R2

1−kr2
, g22 =R2r2, g33=R2r2sin2 θ.

Again by the Cosmological Principle [8], the energy-momentum tensor of the Universe

is in the form

Tµν=




pc2 0 0 0
0 g11 p 0 0
0 0 g22 p 0
0 0 0 g33 p


.
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By the Einstein gravitational field equations

Rµν=−8πG

c4
(Tµν−

1

2
gµνT),

DµTµν=0,

we derive three independent equations

R̈=−4πG

3

(
ρ+

3p

c2

)
R, (6.8)

RR̈+2Ṙ2+2kc2 =4πG
(

ρ− p

c2

)
R2, (6.9)

ρ̇=−3

(
Ṙ

R

)(
ρ+

p

c2

)
, (6.10)

where R,ρ,p are the unknown functions.

Equations (6.8)-(6.10) are called the Friedmann cosmological model, from which we

can derive the Newtonian cosmology equations (6.7). To see this, by (6.8) and (6.9), we

have (
Ṙ

R

)2

=− kc2

R2
+

8πG

3
ρ. (6.11)

By the approximate p/c2 ≃0, (6.5) follows from (6.10). Then we deduce (6.7) from (6.11)

and (6.5).

From the equation (6.11), the density ρc corresponding to the case k=0 is

ρc=
3

8πG

(
Ṙ

R

)2

=
3

8πG
H2, (6.12)

where H= Ṙ/R is the Hubble constant, and by (6.2) we have

ρc =10−26kg/m3. (6.13)

6.2 Globular universe with boundary

If the spatial geometry of a universe is open, then by our theory of black holes developed

in Section 4, we have shown that the universe must be in a ball of a black hole with

a fixed radius. In fact, according to the basic cosmological principle that the universe

is homogeneous and isotropic [8], given the energy density ρ0 > 0 of the universe, by

Theorem 2.4, the universe will always be bounded in a black hole of open ball with the

Schwarzschild radius:

Rs =

√
3c2

8πGρ0
,



368 Ma and Wang / J. Math. Study, 47 (2014), pp. 305-378

as the mass in the ball BRs is given by MRs =4πR3
s ρ0/3. This argument also clearly shows

that

there is no unbounded universe.

In addition, since a black hole is unable to expand and shrink, by property (6.40) of

black holes, all globular universes must be static.

Globular universe

We have shown that the universe is bounded, and suppose that the universe is open,

i.e. its topological structure is homeomorphic to R3, and it begins with a ball. Let E be its

total energy:

E=mass+kinetic+thermal+Ψ, (6.14)

where Ψ is the energy of all interaction fields. Let

M=E/c2. (6.15)

At the initial stage, all energy is concentrated in a ball with radius R0. By the theory

of black holes, the energy contained in the ball generates a black hole in R3 with radius

Rs=
2MG

c2
, (6.16)

provided Rs ≥R0; see (4.1) and Figure 4.1.

Thus, if the universe is born to a ball, then it is immediately trapped in its own black

hole with the Schwarzschild radius Rs of (6.16). The 4D metric inside the black hole of

the static universe is given by

ds2 =−ψ(r)c2dt2+α(r)dr2+r2(dθ2+sin2 θdϕ2), (6.17)

where ψ and α satisfy the equations (2.73) and (2.74) with boundary conditions:

ψ→ ψ̃, α→ α̃ as r→Rs,

where Rs is given by (6.16). Also, ψ̃,α̃ are given via the TOV metric (2.34)-(2.35):

ψ̃=
1

4

(
1− r2

R2
s

)
, α̃=

(
1− r2

R2
s

)−1

for 0≤ r<Rs. (6.18)

Basic problems

A static universe is confined in a ball with fixed radius Rs in (6.16), and the ball be-

haves like a black hole. We need to examine a few basic problems for a static universe,

including the cosmic edge, the flatness, the horizon, the redshift, and the cosmic mi-

crowave background (CMB) radiation problems.
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1) The cosmic edge problem. In the ancient Greece, the cosmic-edge riddle was proposed

by the philosopher Archytas, a friend of Plato, who used “what happens when a spear

is thrown across the outer boundary of the Universe?” The problem appears to be very

difficult to answer. Hence, for a long time physicists always believe that the Universe is

boundless.

Our theory of black holes presented in Section 4 shows that all objects in a globular

universe cannot reach its boundary r= Rs. In particular, an observer in any position of

the globular universe looking toward to the boundary will see no boundary due to the

openness of the ball and the relativistic effect near the Schwarzschild surface. Hence the

cosmic-edge riddle is no longer a problem.

2) The flatness problem. In modern cosmology, the flatness problem means that k=0 in

the FLRW metric [5]. It is common to think that the flatness of the universe is equivalent

to the fact that the present energy density ρ must be equal to the critical value given by

(6.13). In fact, mathematically the flatness means that any geodesic triangle has the inner

angular sum π=180◦.

Measurements by the WMAP (Wilson Microwave Anisotropy Probe) spacecraft in the

last ten years indicated that the Universe is nearly flat. The present radius of the Universe

is about

R=1026m. (6.19)

If the Universe is static, then (6.19) gives the Schwarzschild radius (6.16), from which it

follows that the density ρ of our Universe is just the critical density of (6.13):

ρ=ρc =10−26kg/m3. (6.20)

Thus, we deduce that if the universe is globular, then it is static. In addition, we have

shown that any universe is bounded and confined in a 3D hemisphere of a black hole

or in a 3D sphere as shown in Figure 6.2. Hence as the radius is sufficiently large, the

universe is nearly flat.

3) The horizon problem. The cosmic horizon problem can be simply stated as that all

places in a universe look as the same. It seems as if the static Universe with boundary

violates the horizon problem. However, due to the gravitational lensing effect, the light

bents around a massive object. Hence, the boundary of a globular niverse is like a concave

spherical mirror, and all lights reaching close to it will be reflected back, as shown in

Figure 6.1. It is this lensing effect that makes the globular universe looks as if everywhere

is the same, and is horizontal. In Figure 6.1, if we are in position x, then we can also see

a star as if it is in position ỹ, which is actually a virtual image of the star at y.

4) The redshift problem. Observations show that light coming from a remote galaxy is

redshifted, and the farther away the galaxy is, the larger the redshift is. In astronomy, it

is customary to characterize redshift by a dimensionless quantity z in the formula

1+z=
λobserv

λemit
,
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y

x

r1

ỹ

Figure 6.1: Due to the lensing effect, one at x can also see the star at y as if it is another star at ỹ.

where λobserv and λemit represent the observed and emitted wavelenths. There are three

redshift types:

Doppler effect, cosmological redshift, gravitational redshift.

The gravitational redshift in a black hole are caused by both the gravitational fields of the

emitting object and the black hole.

The first type of redshift, due to the gravitational field, is formulated as

1+z=

√
1− 2mG

c2r√
1− 2mG

c2r0

, (6.21)

where m is the mass of the emitting object, r0 is its radius, and r is the distance between

the object and the observer.

The second type of redshifts, due to the cosmological effect or black hole effect, is

1+z=

√
−g00(r0)√
−g00(r1)

, (6.22)

where g00 is the time-component of the black hole gravitational metric, r0 and r1 are the

positions of the observer and the emitting object (including virtual images).

If a universe is not considered as a black hole, then the gravitational redshift is simply

given by (6.21) and is very small for remote objects. Likewise, the cosmological redshift

is also too small to be significant. Hence, astronomers have to think the main portion of

the redshift is due to the Doppler effect:

1+z=

√
1+v/c√
1−v/c

. (6.23)

When v/c is small, (6.23) can be approximatively expressed as

z≃v/c. (6.24)
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In addition, Hubble discovered that the redshift has an approximatively linear relation

with the distance:

z≃ kR, k is a constant. (6.25)

Thus, the Hubble Law (6.1) follows from (6.24) and (6.25). It is the Hubble Law (6.1) that

leads to the conclusion that our Universe is expanding.

However, if we adopt the view that the globular universe is in a black hole with the

Schwarzschild radius Rs as in (6.16), the black hole redshift (6.22) cannot be ignored. By

(6.17) and (6.18), the time-component g00 for the black hole can approximatively take the

TOV solution as r near Rs:

g00=−1

4

(
1− r2

R2
s

)
, for r near Rs.

Hence, the redshift (6.22) is as

1+z=

√
1−r2

0/R2
s√

1−r2
1/R2

s

for r0,r1<Rs. (6.26)

It is known that for a remote galaxy, r1 is close to the boundary r=Rs. Therefore by (6.26)

we have

z→+∞ as r1→Rs.

It reflects the redshifts observed from most remote objects. If the object is a virtual image

as shown in Figure 6.1, then its position is the reflection point r1. Thus, we see that even

if the remote object is not moving, its redshift can still be very large.

5) CMB problem. In 1965, two physicists A. Penzias and R. Wilson discovered the low-

temperature cosmic microwave background (CMB) radiation, which fills our Universe,

and it is ever regarded as the Big-Bang product. However, for a static closed Universe,

it is the most natural thing that there exists a CMB, because the Universe is a black-body

and CMB is a result of black-body radiation.

6) None expanding Universe. As the energy of the Universe is given, the maximal

radius, i.e. the Schwarzschild radius Rs, is determined, and the boundary is invariant.

In fact, a globular universe must fill the ball with the Schwarzschild radius, although

the distribution of the matter in this ball may be slightly non-homogenous. The main

reason is that if the universe has a radius R smaller than Rs, then it must contain at least

a sub-black hole with radius R0 as follows

R0=

√
R

Rs
R.

In Subsection 6.4 we shall discuss this topic.
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6.3 Spherical Universe without boundary

Bounded universe has finite energy and space, and our Universe is bounded as we have

demonstrated in the last section. Besides the globular universe, another type of bounded

universe is the spherically-shaped corresponding to the k=1 case in the Friedmann model

(6.8)-(6.10).

A globular universe must be static. With the same argument, a spherical closed uni-

verse have to be static as well. In this subsection, we are devoted to investigate the

spherical cosmology.

1) Cosmic radius. For a static spherical universe, its radius Rc satisfies that

Ṙc=0, R̈c=0.

By the Friedmann equation (6.11), it leads to that

R2
c =

3c2

8πGρ
. (6.27)

For a 3D sphere, its volume V is given by

V=2π2R3.

Thus, ρ=M/2π2R3
c , and by (6.28) we get the radius Rc as

Rc=
4MG

3πc2
. (6.28)

This value (6.28) is also the maximal radius for a (possibly) oscillatory spherical universe.

2) Negative pressure. By (6.8) and R̈c=0, the pressure is negative:

p=−ρc2

3
. (6.29)

In order to resist the gravitational pulling, it is natural that there is a negative pressure in

a static universe, which originates from three sources:

thermal expanding, radiation pressure, and dark energy.

These three types of forces are repulsive, and therefore yield the negative pressure as

given by (6.29).

In fact, in our Universe both thermal and radiation (microwave radiation) pressures

are very small. The main negative pressure is generated by the so called “dark energy”.

In [5], we have shown that the dark energy is the repulsive gravitational effect for a

remote object of great distance. From the field theoretical point view, dark energy is an
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effect of the dual gravitational field Ψµ in the PID-induced gravitational field equations

(1.6) discovered by the authors.

3) Equivalence. It seems that both spherical and globular geometries are very different.

However, in the following we show that they are equivalent in cosmology. In fact, as the

space-time curvature is caused by gravitation, a globular universe must be a 3D hemi-

sphere as shown in Figure 6.2(a), and a spherical universe is as shown in Figure 6.2(b),

which is a 3D sphere piecing the upper and lower hemispheres together.

Rc

semi-sphere

(a)

Rc

upper semi-sphere

(b)

lower semi-sphere

Figure 6.2: (a) A 3D hemisphere, and (b) a 3D sphere piecing the upper and lower hemispheres together.

In cosmology, the globular universe is a black hole, which likes as a 3D hemisphere,

and the spherical universe can be regarded as if there were two hemispheres of black

holes attached together.

We show this version from the cosmological dynamics.

First, by the Newtonian cosmological equation (6.7), i.e.

(
Ṙ

R

)2

=
8πG

3
ρ− kc2

R2
. (6.30)

For a static universe in a black hole with maximal radius Rc, the equation (6.30) becomes

Ṙc=0 ⇔ 8πG

3
ρ=

kc2

R2
c

. (6.31)

The volume of the hemisphere is

V0=
∫ 2π

0
dθ
∫ π

0
dϕ
∫ π

2

0
R3

c sinθsin2ψdψ=π2R3
c ,

where x∈R4 takes the spherical coordinate:

(x1,x2,x3,x4)=(Rc sinψsinθcos ϕ,Rcsinψsinθsinϕ,Rcsinψcosθ,Rccosψ). (6.32)

Thus, the mass density is

ρ=Mtotal/π2R3
c , (6.33)

Then it follows from (6.31) that

Rc=
8GMtotal

3πc2
for k=1. (6.34)
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Remark 6.1. The mass Mtotal in (6.33) contains the energy contributed by the space cur-

vature, i.e.

Mtotal=M+space curved energy,

where M is the mass of the flat space. By the invariance of density,

M/
4π

3
R3

c =Mtotal/π2R3
c ,

we get the relation

Mtotal=
3π

4
M. (6.35)

With the flat space mass (6.35), from (6.34) we get the Schwarzschild radius Rs = Rc for

the cosmic black hole as follows

Rs=2GM/c2.

It means that the globular universe is essentially hemispherically-shaped. In particular

the relation (6.35) can be generated to an arbitrary region Ω⊂R3, i.e.

M̃Ω=
VΩ

|Ω|MΩ, (6.36)

where MΩ is the flat space mass in Ω,M̃Ω is the curved space mass, |Ω| is the normal

volume of Ω,

VΩ=
∫

Ω

√
gdx, g=det(gij),

and gij (1≤ i, j≤3) is the spatial gravitational metric.

Now, we return to the Friedmann model (6.11) with k= 1, which has the same form

as that of the globular dynamic equation (6.30), and is of the same maximal radius Rc

as that in (6.34). Hence, it is natural that a static spherical universe is considered as if

there were two hemispherical black holes attached together. In fact, the static spherical

universe forms an entire black hole as a closed space.

4) Basic problems. Since a static spherical universe is equivalent to two globular uni-

verses to be pieced together along with their boundary, an observer in its hemisphere is

as if one is in a globular universe. Hence, the basic problems – the cosmic edge problem,

flatness problem, horizon problem, and CMB problem– can be explained in the same

fashion.

The redshift problem is slightly different, and the gravitational redshift is given by

1+z=
1√

−g00(r)
, (6.37)

where r is the distance between the light source and the observer, and g00 is the time-

component of the gravitational metric.
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Due to the horizon of sphere, for an arbitrary point on a spherical universe, its op-

posite hemisphere relative to the point plays a similar role as a black hole. Hence, in the

redshift formula (6.37), g00 can be approximatively taken as the Schwarzschild solution

for distant objects as follows

−g00=1− Rs

r̃
, Rs=

2MG

c2
, r̃=2Rs−r for 0≤ r<Rs,

where M is the cosmic mass of hemisphere, and r̃ is the distance from the light source

to the opposite radial point, and r is from the light source to the point. Hence, formula

(6.37) can be approximatively written as

1+z=
1√

α(r)(1− Rs
r̃ )

=

√
2Rs−r√

α(r)(Rs−r)
for 0< r<Rs. (6.38)

where

α(0)=2, α(Rs)=1, α′(r)<0.

We see from (6.38) that the redshift z → ∞ as r → Rs, and, consequently, we cannot see

objects in the opposite hemisphere. Intuitively, α(r) represents the gravitational effect of

the matter in the hemisphere of the observer.

5) Physical conclusions. In either case, globular or spherical, the universe is equivalent

to globular universe(s). It is not originated from a Big-bang, is static, and confined in a

black hole in the sense as addressed above. The observed mass M and the implicit mass

Mtotal have the relation

Mtotal=2× 3π

4
M=3πM/2, (6.39)

which is derived by (6.35) adding the mass of another hemisphere.

The implicit mass M of (6.39) contains the dark matter. In [5], both the dark matter

Mtotal−M and the dark energy (i.e. the negative pressure (6.29)) just a property of gravity.

6.4 New cosmology

We start with two difficulties encountered in modern cosmology.

First, if the Universe were born to a Big-Bang and expanded continuously, then in the

expansion process it would generate successively a large number of black holes, whose

radii vary as follows:

√
R0

Rs
R0≤ r≤

√
R

Rs
R, R0<R≤Rs=

2MG

c2
, (6.40)

where M is the total mass in the universe, R0 is the initial radius, R is the expanding

radius, and r is the radius of sub-black holes.
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To see this, we consider a homogeneous universe with radius R<Rs. Then the mass

density ρ is given by

ρ=
3M

4πR3
. (6.41)

On the other hand, by Theorem 2.4, the condition for a ball Br with radius r to form a

black hole is that the mass Mr in Br satisfies that

Mr

r
=

c2

2G
. (6.42)

By (6.41), we have

Mr =
4π

3
r3ρ=

r3

R3
M.

Then it follows from (6.42) that

r=

√
R

Rs
R. (6.43)

Actually, in general for a ball Br in a universe with radius R<Rs, if its mass Mr satisfies

(6.42) then it will form a black hole, and its radius r satisfies that

r≤
√

R

Rs
R.

In particular, there must exist a black hole whose radius r is as in (6.43). Thus, we derive

the conclusion (6.40).

Based on (6.40) we can deduce that if the Universe were born to a Big-Bang and con-

tinuously expands, then it would contain many black holes with smaller ones being em-

bedded in the larger ones. In particular, the Universe would contain a huge black hole

whose radius r is almost equal to the cosmic radius Rs. This is not what we observed in

our Universe.

The second difficulty of modern cosmology concerns with the Hubble Law (6.1),

which is restated as v=HR, where c/H=Rs. Consider a remote object with mass M0, then

the observed mass Mobser is given by Mobser =
M0√
1− v2

c2

. Consequently, the corresponding

gravitational force F to the observer with mass m is

F=−mMobserG

r2
=− mM0G

r2
√

1− v2

c2

=− mM0G

r2
√

1− H2

c2 r2
=− mM0G

r2
√

1− r2

R2
s

.

It is clear then that as r→Rs, F→−∞. This is clearly not what is observed.

In conclusion, we have rigorously derived the following new theory of cosmology:

Theorem 6.2. Assume a) the Einstein theory of general relativity, and b) the principle of cosmo-

logical principle that the universe is homogeneous and isotropic. Then the following assertions

hold true for our Universe:
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1) All universes are bounded, are not originated from a Big-Bang, and are static.

2) The topological structure of our Universe can only be the 3D sphere such that to each ob-

server, the corresponding equator with the observer at the center of the hemisphere can be

viewed as the black hole horizon.

Theorem 6.3. If we assume only a) the Einstein theory of general relativity, and b’) the universe

is homogeneous. Then all universes can only be either a 3D sphere as given in Theorem 6.2, or a

globular universe, which is a 3D open ball BRs of radius Rs, forming the interior of a black hole

with Rs as its Schwarzschild radius. In the later case, the Universe is also static, is not originated

from a Big-Bang, and the matter fills the entire Universe. Also, the following assertions hold true:

1) The cosmic observable mass M and the total mass Mtotal, which includes both M and the

non-observable mass due to the space curvature energy, satisfy the following relation

Mtotal=

{
3πM/2 for the spherical structure,

3πM/4 for the globular structure.
(6.44)

The difference Mtotal−M can be regarded as the dark matter.

2) The static Universe has to possess a negative pressure to balance the gravitational attracting

force. The negative pressure is actually the effect of the gravitational repelling force, also

called dark energy.

3) Both dark matter and dark energy are a property of gravity, which is reflected in both space-

time curvature, and the attracting and repulsive gravitational forces in different scales of the

Universe. This law of gravity is precisely described by the new gravitational field equations

(1.8); see also [5].

We end this section with three remarks and observations.

First, astronomical observations have shown that the measurable mass M is about

one fifth of total mass Mtotal. By (6.44), for the spherical universe,

Mtotal=4.7M.

This relation also suggest that the spherical universe case fits better the current under-

standing for our Universe.

Second, due to the horizon of sphere, for an arbitrary point in a spherical universe,

its opposite hemisphere relative to the point is as if it is a black hole. Hence the main

contribution to the redshifts is from the effect of the black hole, as explicitly given by

(6.38).

Third, in modern cosmology, the view of expanding universe was based essentially

on the Friedmann model and the Hubble Law. The observations can accurately measure
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the distances and redshifts for some galaxies, which allowed astronomers to get both

measured and theoretical data, and their deviation led to the conclusion that the expand-

ing universe is accelerating. The misunderstanding comes from the perception that the

Doppler redshift is the main source of redshifts.
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