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Abstract. We present a comparative numerical study for three functionals used for
variational mesh adaptation. One of them is a generalization of Winslow’s variable dif-
fusion functional while the others are based on equidistribution and alignment. These
functionals are known to have nice theoretical properties and work well for most mesh
adaptation problems either as a stand-alone variational method or combined within
the moving mesh framework. Their performance is investigated numerically in terms
of equidistribution and alignment mesh quality measures. Numerical results in 2D
and 3D are presented.
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1 Introduction

Variational mesh adaptation is an important type of mesh adaptation method and has
received considerable attention from scientists and engineers; e.g., see the books [15, 19,
23, 24] and references therein. It also serves as the base of a number of commonly used
adaptive moving mesh methods (e.g., see [5, 12, 14, 22]). In the variational approach, an
adaptive mesh is generated as the image of a reference mesh under a coordinate transfor-
mation and such a coordinate transformation is determined as a minimizer of a certain
meshing functional. A number of meshing functionals have been developed in the past
(cf. the above mentioned books). For example, Winslow [25] proposed an equipotential
method based on variable diffusion. Brackbill and Saltzman [3] developed a method by
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combining mesh concentration, smoothness, and orthogonality. Dvinsky [6] used the
energy of harmonic mappings as his meshing functional, while Knupp [20] and Knupp
and Robidoux [21] developed functionals based on the idea of conditioning the Jaco-
bian matrix of the coordinate transformation. More recently, Huang [7] and Huang and
Russell [15] proposed functionals based on the so-called equidistribution and alignment
conditions.

With variational mesh adaptation, the mesh concentration is typically controlled thro-
ugh a scalar or a matrix-valued function, often referred to as the metric tensor or moni-
tor function and defined based on some error estimates and/or physical considerations.
While most of the meshing functionals have been developed with physical or geometric
intuitions and have various levels of success in the adaptive numerical solution of partial
differential equations (PDEs) and other applications, there is only a limited understand-
ing on how the metric tensor affects the behavior of the mesh. An attempt to alleviate
this lack of understanding was made by Cao et al. [4] for a generalization of Winslow’s
variable diffusion functional. They showed that a significant change in an eigenvalue of
the metric tensor along the corresponding eigendirection (first increasing and then de-
creasing, or vice versa) will result in adaptation of coordinate lines along this direction,
although this adaptation competes with far more complicated effects, including those
from changes in eigenvectors and other eigenvalues and the effects of the shapes of the
physical and computational domains and the mesh point distribution on the boundaries.
In [7,15], two functionals have been developed based directly on the equidistribution and
alignment conditions. These two conditions provide a complete characterization of the
mesh elements through the metric tensor [7]. Minimizing the functionals leads to meshes
which tend to satisfy the conditions in an integral sense. Nevertheless, this characteri-
zation is only qualitative, and how closely the mesh satisfies the conditions depends on
the boundary correspondence between the computational and physical domains and the
mesh point distribution on the boundaries. Thus, numerical studies, especially compar-
ative ones, are useful, and often necessary, in understanding how the mesh adaptation
for those meshing functionals is controlled precisely by the metric tensor. There do exist
a few comparative numerical studies for meshing functionals. For example, a gallery of
(adaptive and non-adaptive) meshes is given in [19] for a number of meshing functionals.
Some comparative meshes are given in [15] for the harmonic mapping functional [6] and
the subsequent functional based on equidistribution and alignment [7].

The main objective of this work is to present a comparative study for three of the most
appealing meshing functionals, a generalization of Winslow’s variable diffusion func-
tional (cf. (3.2)) and two functionals based on equidistribution and alignment (cf. (3.7)
and (3.9)). They are selected because (3.2) and (3.7) have been known to work well for
many problems (e.g., see [1, 2, 7, 13, 14, 22]) while (3.9) is similar to (3.7) and has some
very nice theoretical properties (cf. §3.2). Another motivation is to present some three di-
mensional numerical results for those functionals. Critical for our study is to perform the
substantial computations using the improved implementation of the variational methods
introduced in [11]. In a sharp contrast to the situation in two dimensions, very little work
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has been done with variational mesh adaptation and adaptive moving mesh methods in
three dimensions (e.g., see [15,22]). It is particularly interesting to see how the functionals
perform in this case.

An outline of the paper is given as follows. We describe the basic ideas of the vari-
ational mesh adaptation and its direct discretization (that is, first to discretize and then
optimize) in §2. In §3 we introduce the three functionals to be studied for the numerical
comparison, a generalization of Winslow’s variable diffusion functional and two func-
tionals based on equidistribution and alignment. Numerical results and example adap-
tive meshes are given in §4, followed by conclusions in §5.

2 Variational mesh adaptation

In variational mesh adaptation, an adaptive mesh is generated as the image of a reference
mesh under a coordinate transformation. Denote the physical domain by Ω⊂Rd (d≥1),
and assume that we are given a computational domain Ωc⊂Rd and a quasi-uniform mesh
T̂hc thereon (in this work we consider only simplicial meshes). In many situations we can
choose Ωc to be the unit square/cube or simply Ω. Denote the coordinate transformation
by x=x(ξ) : Ωc→Ω and its inverse by ξ=ξ(x) : Ω→Ωc. Such a coordinate transformation
(more precisely, its inverse) is determined as a minimizer of a meshing functional. Most
of the existing meshing functionals can be cast in a general form as

I[ξ]=
∫

Ω
G(J,det(J),M,x)dx, (2.1)

where G is a smooth function, J is the Jacobian matrix of ξ = ξ(x), det(J) denotes the
determinant of J, and M = M(x) is the metric tensor supplied by the user to control
mesh concentration. We assume that M=M(x) is a symmetric and uniformly positive
definite d-by-d matrix-valued function on Ω. Notice that (2.1) is formulated in terms of
the inverse coordinate transformation. One reason for this is that this form is less likely
to produce singular meshes [6]. Another reason is that M is a function of x and thus
finding the functional derivative of I[ξ] will not directly involve the derivatives of M.
This is convenient since in practice M is known only at the vertices of a mesh and its
derivatives are not cheap to find. The main disadvantage of the formulation in this form
is that ξ=ξ(x) (or its numerical approximation) does not give the physical mesh directly.
This is remedied either by interchanging the roles of the independent and dependent
variables in the Euler-Lagrange equation of I[ξ] (e.g., see [15]) or, in a recently developed
implementation (see below), computing the new physical mesh from a computational
one using linear interpolation.

A minimizer of (2.1) can be found numerically in the MMPDE (moving mesh PDE)
framework. A conventional implementation [15] is to find the functional derivative of
(2.1) and then define the MMPDE as the gradient flow equation of the functional. Hav-
ing been transformed by interchanging the roles of the dependent and independent vari-
ables, the MMPDE can be discretized on T̂hc and a system of equations for the nodal
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velocities is obtained. Finally, the new mesh is obtained by integrating the mesh equa-
tion over a time step.

A much simpler implementation was proposed recently by Huang and Kamenski [11].
Instead of utilizing the MMPDE directly, the new implementation first discretizes the
functional on the current mesh Th and then, following the idea of the MMPDE, defines
the mesh equation as the gradient equation of the discretized functional (with respect to
the computational coordinates of the vertices). To be specific, denote by xi, ξ̂i, and ξi,
i=1,.. .,Nv the coordinates of the vertices of the current physical mesh (Th), the reference
mesh (T̂hc), and the computational mesh (Thc), respectively. We assume that these meshes
have the same numbers of the elements and vertices and the same connectivity. For any
element K∈Th (with vertices xK

i , i=0,.. .,d), the corresponding element in Thc is denoted
by Kc (with vertices ξK

i , i=0,.. .,d). The edge matrices for K and Kc are defined as

EK =[xK
1 −xK

0 ,. . .,xK
d −xK

0 ], EKc =[ξK
1 −ξK

0 ,. . .,ξK
d −ξK

0 ].

Let ωi be the element patch associated with vertex xi (i.e., the collection of the elements
containing xi as a vertex). Then, the equation for the nodal velocities reads as

dξi
dt =

Pi
τ ∑

K∈ωi

|K|vK
iK

, i=1,.. .,Nv, tn < t≤ tn+1,

ξi(tn)= ξ̂i, i=1,.. .,Nv,
(2.2)

where |K| is the volume of K, vK
iK

is the local mesh velocity associated with vertex xi in
K, iK denotes the local index of xi in K, τ > 0 is a constant parameter used to adjust the
time scale of mesh movement, and P=(P1,. . .,PNv) is a positive function used to make the
mesh equation to have desired invariance properties. Although the parameter τ can be
absorbed in P, using two parameters has the advantage that the role of each parameter is
clear: τ for the time scale of mesh movement while P for the invariance properties. Ide-
ally, τ should be chosen such that the mesh movement has the same scale as the physical
equation. Unfortunately, there is no theoretical analysis for this yet and trial and error
is still the most practical way to choose τ. Numerical experience shows that a value in
the range [0.01,0.1] seems to work well for most problems [15]. In our computation, we
choose P such that the equation is invariant under the scaling transformation M→cM for
all non-zero constants c (cf. §3): in variational mesh adaptation it is the relative distribu-
tion of M over the physical domain (instead of its absolute distribution) that determines
the variation of the mesh density and therefore it is essential for the moving mesh equa-
tion to be invariant under the scaling transformation of M.

The local velocities are given by(v
K
1 )

T

...
(vK

d )
T

=−E−1
K

∂G
∂J
− ∂G

∂det(J)
det(EKc)

det(EK)
E−1

Kc
, vK

0 =−
d

∑
j=1

vK
j , (2.3)
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where the derivatives of G with respect to J and det(J) (see (3.3), (3.8) and (3.10) below)
are evaluated as

∂G
∂J

=
∂G
∂J

(
EKc E−1

K ,
det(EKc)

det(EK)
,M(xK),xK

)
,

∂G
∂det(J)

=
∂G

∂det(J)

(
EKc E−1

K ,
det(EKc)

det(EK)
,M(xK),xK

)
.

The second equation in (2.3) is an inherent property resulting directly from the differen-
tiation of the discretized meshing functional; it states that the centroid of K stays fixed if
only the contribution from K is taken into account.

The above mesh equation should be modified properly for boundary vertices. For
example, if ξi is a fixed boundary vertex, we replace the corresponding equation by

∂ξi
∂t

=0.

When ξi is allowed to move on a boundary curve/surface represented by

φ(ξ)=0,

then the mesh velocity ∂ξi
∂t needs to be modified such that its normal component along

the curve or surface is zero, i.e.,
∇φ(ξi)·

∂ξi
∂t

=0.

Mesh equation (2.2) defines the movement of the nodes of the computational mesh Thc
starting from the reference mesh T̂hc at tn. The equation can be integrated in time to obtain
the computational mesh at tn+1. For notational simplicity, we denote the computational
mesh at tn+1 by Thc as well. Notice that the physical mesh Th is fixed during the time
integration from tn to tn+1. Meshes Thc and Th define a correspondence

Th =Ψ(Thc).

The new physical mesh is computed by means of linear interpolation as

T̃h =Ψ(T̂hc),

where T̂hc is the reference mesh on Ωc. The computational mesh plays the role of an
intermediate variable.

Recall that the mesh concentration in variational mesh adaptation is controlled through
the metric tensor M=M(x). Such a metric tensor can be defined based on physical or ge-
ometric considerations or some error estimates. For example, for the L2 norm of the error
of piecewise linear interpolation on simplicial meshes, the optimal metric tensor [9, 16]
(also see [15, (5.192)]) reads as

M=det(αI+|H(u)|)− 1
d+4 [αI+|H(u)|], (2.4)
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where H(u) is the Hessian of function u, |H(u)| is the eigen-decomposition of H(u) with
the eigenvalues being replaced by their absolute values, and the regularization parameter
α>0 is chosen such that∫

Ω
det(M)

1
2 dx≡

∫
Ω

det(αI+|H(u)|) 2
d+4 dx=2

∫
Ω

det(|H(u)|) 2
d+4 dx.

In practical computation, u is typically unknown, and only the approximations to its
values at the vertices are available. For this reason (and even in situations where an ana-
lytical expression for u is available), the Hessian in (2.1) is replaced by an approximation
obtained by a Hessian recovery technique from the nodal values of u or the approxi-
mations of the nodal values of u. A number of such techniques are known to produce
nonconvergent recovered Hessians from a linear finite element approximation (e.g., see
Kamenski [17]). Nevertheless, it is shown by Kamenski and Huang [18] that a linear fi-
nite element solution of an elliptic BVP converges at a second order rate as the mesh is
refined if the recovered Hessian used to generate the adaptive mesh satisfies a closeness
assumption. Numerical experiment shows that this closeness assumption is satisfied by
the approximate Hessian obtained with commonly used Hessian recovery methods. We
use a Hessian recovery method based on a least squares fit: a quadratic polynomial is
constructed locally for each vertex via least squares fitting to neighboring nodal function
values and an approximate Hessian at the vertex is then obtained by differentiating the
polynomial.

3 Meshing functionals

Here we introduce the three meshing functionals used in the numerical study. A gen-
eralization of Winslow’s variable diffusion functional and the two functionals based on
equidistribution and alignment are selected because they are reasonably simple, have
nice theoretical properties, and are known to work well for many problems.

3.1 Winslow’s functional based on variable diffusion

The first functional is the variable diffusion proposed by Winslow [25]. It uses the system
of elliptic PDEs

−∇·(w∇ξi)=0, i=1,.. .,d,

for generating adaptive meshes, where w=w(x)>0 is the weight function. This system
mimics a (steady-state) diffusion process with a heterogeneous diffusion coefficient w(x).
It is the Euler-Lagrange equation of the functional

I[ξ]=
1
2

∫
Ω

d

∑
i=1

w(x)|∇ξi|2 dx=
1
2

∫
Ω

w(x)tr(JJT)dx, (3.1)
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where tr(·) is the trace of a matrix. A generalization of this functional to allow a diffusion
tensor reads as

I[ξ]=
1
2

∫
Ω

tr(JM−1JT)dx. (3.2)

This functional has been used by a number of researchers, e.g., see Huang and Russell [13,
14], Li et al. [22], and Beckett et al. [2]. It is coercive and convex [15, Example 6.2.1]. Thus,
under a suitable boundary condition (such as the Dirichlet boundary condition with ∂Ωc
being mapped onto ∂Ω), the functional (3.2) has a unique minimizer.

For this functional, we can find the derivatives of G with respect to J and det(J)
needed in (2.3), 

G= 1
2 tr(JM−1JT),

∂G
∂J

=M−1JT,
∂G

∂det(J) =0.
(3.3)

The interested reader is referred to [11] for the derivation.
The balancing function in (2.2) is chosen as P = det(M)

1
d . With this choice, (2.2) is

invariant under the scaling transformation M→ cM.

3.2 Functionals based on equidistribution and alignment

The other functionals are based on the equidistribution and alignment conditions. These
conditions provide a full mathematical characterization of a non-uniform mesh. Indeed,
any non-uniform mesh can be viewed as a uniform one in the metric specified by a tensor.
Moreover, a mesh is uniform in the metric specified by the metric tensor M=M(x) if and
only if it satisfies the equidistribution and alignment conditions associated with M [10,
15]. In the continuous form, they are

equidistribution: det(J)−1det(M)
1
2 =

σ

|Ωc|
, ∀x∈Ω (3.4)

alignment:
1
d

tr(JM−1JT)=det(JM−1JT)
1
d , ∀x∈Ω, (3.5)

where

σ=
∫

Ω
det(M)

1
2 dx. (3.6)

These conditions require the mesh elements to have the same size (equidistribution) and
be equilateral (alignment) in the metric M, respectively. The alignment condition also
implies that the elements are aligned with M in the sense that the principal directions
of the circumscribed ellipsoid of each element coincide with the eigen-directions of M

while the lengths of the principal axes of the ellipsoid are reciprocally proportional to the
square roots of the eigenvalues of M.
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The first functional based on equidistribution and alignment, proposed in [7], is

I[ξ]= θ
∫

Ω

√
det(M)

(
tr(JM−1JT)

) dp
2 dx+(1−2θ)d

dp
2

∫
Ω

√
det(M)

(
det(J)√
det(M)

)p

dx,

(3.7)
where θ∈ (0,1) and p>0 are dimensionless parameters. Loosely speaking, the first and
second terms correspond to the equidistribution and alignment conditions, respectively.
The terms are dimensionally homogeneous and the balance between them is controlled
by the dimensionless parameter θ. For 0<θ≤ 1

2 , dp≥2, and p≥1, the functional is coercive
and polyconvex and has a minimizer [15, Example 6.2.2]. Moreover, for θ= 1

2 and dp=2
it reduces to

I[ξ]=
1
2

∫
Ω

√
det(M)tr(JM−1JT)dx,

which is exactly the energy functional of a harmonic mapping from Ω to Ωc (cf. [6]).
For the functional (3.7), we have

G= θ
√

det(M)
(
tr(JM−1JT)

) dp
2 +(1−2θ)d

dp
2
√

det(M)

(
det(J)√
det(M)

)p

,

∂G
∂J

=dpθ
√

det(M)
(
tr(JM−1JT)

) dp
2 −1

M−1JT,
∂G

∂det(J) = p(1−2θ)d
dp
2 det(M)

1−p
2 det(J)p−1.

(3.8)

In the computation, we use (p,θ) = (2, 1
3 ). p= 2 is the smallest integer to satisfy dp≥ 2

for d= 1, 2, and 3. The choice of θ = 1/3 is in the range (0,1/2] for the functional to be
polyconvex while giving a bigger weight to the equdistribution condition. This set of the
values works well for all tested problems. The balancing function in (2.2) is chosen to be
P=det(M)

p−1
2 , so that (2.2) is invariant under the scaling transformation M→ c M.

The second functional based on equidistribution and alignment reads as

I[ξ]=θ1

∫
Ω

√
det(M)

(
tr(JM−1JT)

) dp
2 dx

+θ2d
dp(d−2)
2(d−1)

∫
Ω

det(M)
1
2 (1−

dp
d−1 )det(J)

dp
d−1

(
tr(J−TMJ−1)

) dp
2(d−1) dx

+(θ3−θ1−θ2)d
dp
2

∫
Ω

√
det(M)

(
det(J)√
det(M)

)p

dx

+
θ4

σp+ν

∫
Ω

√
det(M)

(
det(J)√
det(M)

)−ν

dx, (3.9)

where p>1, ν>0, and θi >0 (i=1,.. .,4) are parameters. The first three terms in (3.9) are
dimensionally homogeneous in M and J while the last term has the same dimension in
M as the other terms. This functional was proposed in [15, (6.120)] to avoid singularity
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of the coordinate transformation. Indeed, if θ3−θ1−θ2>0, then the functional is coercive
and polyconvex and has a minimizer satisfying det(J)>0 in Ω [15, Example 6.2.3].

In the computation, we choose θ1=θ2=
1
3 , θ3=1, θ4=0.1, p=2, ν=1, and the balancing

function P=det(M)
p−1

2 . These choices are based on the functional (3.7) and the desire to
keep the fourth term relatively small.

For this functional, we have

G= θ1
√

det(M)
(
tr(JM−1JT)

) dp
2

+θ2d
dp(d−2)
2(d−1) det(M)

1
2 (1−

dp
d−1 )det(J)

dp
d−1
(
tr(J−TMJ−1)

) dp
2(d−1)

+(θ3−θ1−θ2)d
dp
2

(√
det(M)

)1−p
det(J)p

+ θ4
σp+ν

(√
det(M)

)1+ν
det(J)−ν,

∂G
∂J

= θ1dp
√

det(M)
(
tr(JM−1JT)

) dp
2 −1

M−1JT

− θ2dp
d−1 d

dp(d−2)
2(d−1) det(M)

1
2 (1−

dp
d−1 )det(J)

dp
d−1
(
tr(J−TMJ−1)

) dp
2(d−1)−1

J−1J−TMJ−1,
∂G

∂det(J) =
θ2dp
d−1 d

dp(d−2)
2(d−1) det(M)

1
2 (1−

dp
d−1 )det(J)

dp
d−1−1(tr(J−TMJ−1)

) dp
2(d−1)

+(θ3−θ1−θ2)pd
dp
2

(√
det(M)

)1−p
det(J)p−1

− θ4ν
σp+ν

(√
det(M)

)1+ν
det(J)−ν−1.

(3.10)

4 Numerical experiments

In the following we consider a number of examples in two and three dimensions. For
a given function we consider M defined in (2.4) which is optimal for minimizing the L2

norm of the linear interpolation error of this function and compare meshes obtained from
using the functionals of Winslow (3.2) (W), Huang (3.7) (H), and Huang and Russell (3.9)
(HR).

To assess the quality of the generated meshes, we compare the L2 norm of the lin-
ear interpolation error and the equidistribution and alignment mesh quality measures,
which describe how far the mesh is from being uniform in the metric defined by M. The
element-wise quality measures are based on (3.4) and (3.5) and defined as

Qeq,K =
det(JK)

−1det(MK)
1
2

σ/|Ωc|
, Qali,K =

tr(JKM−1
K JT

K)

ddet(JKM−1
K JT

K)
1
d

, (4.1)

while for the overall mesh quality measures we take their root-mean-squared values,

Qeq =

√
1
N ∑

K∈Th

Q2
eq,K, Qali =

√
1
N ∑

K∈Th

Q2
ali,K. (4.2)
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If the mesh is uniform with respect to M, then Qeq = Qali = 1; if the mesh is far from
being uniform with respect to M, then Qeq and Qali will become large. In other words,
these quality measures describe how well the volume (measured by Qeq) and the shape
and orientation (measured by Qali) of mesh elements correspond to the desired size and
shape prescribed by M (see [8] for more details on the mesh quality measures).

4.1 Two dimensions

First, we consider two dimensional meshes constructed for the unit square Ω= (0,1)×
(0,1) and the test functions

Example 4.1.
u= tanh(−30[y−0.5−0.25sin(2πx)]).

Example 4.2.
u= tanh(25y)−tanh(25(x−y−0.5)).

Example meshes, close-ups, as well as the mesh quality measures and the L2 interpo-
lation error are given in Figs. 1 and 2.

For these examples, all three functionals provide good size and shape adaptation.
A closer look at the mesh quality measures shows that, although all three functionals
provide comparable meshes which are reasonably close to the prescribed metric tensor,
meshes constructed using H and HR functionals have better correspondence to the pre-
scribed metric tensor. In both two-dimensional examples, H and HR functionals provide
very similar grids which are closer to the prescribed size and shape (that is, smaller values
of Qeq and Qali). This is also reflected in the error of the linear interpolation: HR func-
tional (3.9) provides the smallest error, followed by H functional (3.7) and then W func-
tional (3.2). It seems that W functional is a bit too aggressive in moving nodes towards
the neighborhood of areas of interest, providing a higher density of the nodes along the
anisotropic features of the given function while coarsening out the mesh nearby, leading
to a steeper element size gradation. Interestingly, for both examples the convergence of
the linear interpolation error for W functional (Figs. 1f and 2f) slows down near N=104

and returns to the order O(N−1) as the mesh is refined (N is the number of mesh ele-
ments). It is unclear to us what causes this for W functional.

For Example 4.1 we also compute adaptive meshes for the metric tensor which is op-
timal for the H1 semi norm error (see, e.g., [10] for details on the metric tensor). The
results shown in Fig. 3 are essentially the same as in Fig. 1: HR functional (3.9) provides
the smallest error, followed by H functional (3.7) and then W functional (3.2). For this
metric tensor, the L2 error for the H and HR functionals (Fig. 3f) is slightly larger than
in Fig. 1f, which is not surprising, since the metric tensor chosen for Fig. 1 is optimal
for the L2 error. Thus, adding the equidistribution property to the meshing functional
seems to help to obtain meshes which are closer to fulfilling the prescribed properties.
Interestingly, the L2 error for the W functional seems to be a bit smaller if the H1 metric
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tensor is used. This can be explained by the fact that the W functional does not incor-
porate the equidistribution property and, thus, doesn’t exactly generate a mesh which is
uniform with respect to the provided metric tensor. Thus, it is not quite clear if one is
able to generate the optimal mesh when using the W functional.

4.2 Three dimensions

In three dimensions, we consider the unit cube Ω=(0,1)×(0,1)×(0,1) and the following
test functions.

Example 4.3.

u=tanh
(
30
[
(4x−2.0)2+(4y−2.0)2+(4z−2.0)2−0.1875

])
+tanh

(
30
[
(4x−2.5)2+(4y−2.5)2+(4z−2.5)2−0.1875

])
+tanh

(
30
[
(4x−2.5)2+(4y−1.5)2+(4z−2.5)2−0.1875

])
+tanh

(
30
[
(4x−1.5)2+(4y−2.5)2+(4z−2.5)2−0.1875

])
+tanh

(
30
[
(4x−1.5)2+(4y−1.5)2+(4z−2.5)2−0.1875

])
+tanh

(
30
[
(4x−2.5)2+(4y−2.5)2+(4z−1.5)2−0.1875

])
+tanh

(
30
[
(4x−2.5)2+(4y−1.5)2+(4z−1.5)2−0.1875

])
+tanh

(
30
[
(4x−1.5)2+(4y−2.5)2+(4z−1.5)2−0.1875

])
+tanh

(
30
[
(4x−1.5)2+(4y−1.5)2+(4z−1.5)2−0.1875

])
.

Example 4.4.
u= tanh

(
−30[z−0.5−0.25sin(2πx)sin(πy)]

)
.

Example 4.5.

u= tanh
(
−30

{
z−tanh

(
−30[y−0.5−0.25sin(2πx)]

)})
.

Adaptive mesh examples (slice and clip cuts) and numerical results are given in Figs.
4 to 6.

As in two dimensions, all three functionals provide good size and shape adaptation,
with Qeq and Qali being reasonably small. The best mesh size control Qeq is given by HR
functional (Figs. 4g, 5g and 6g), although for the considered examples, HR has a slightly
worse mesh alignment quality Qali than the others (Figs. 4h, 5h, and 6h).

A closer look at the example meshes (slice cuts) reveals that, as in 2D, W functional
—based on variable diffusion— is noticeably more aggressive in moving nodes toward
the steep features or, alternatively, one can say that the functionals (3.7) and (3.9) based
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(a) Winslow’s (3.2)

(b) Huang’s (3.7)

(c) Huang and Russell’s (3.9)

103 104 105
1

1.5

2

2.5 Winslow
Huang

HR

(d) Qeq vs. N

103 104 105
1

1.5

2

2.5 Winslow
Huang

HR

(e) Qali vs. N

103 104 105
10−4

10−3

10−2 Winslow
Huang

HR

(f) L2 interpolation error vs. N

Figure 1: Example 4.1: example meshes (left), close-ups near the wave tip (middle) and in the middle (right),

mesh quality measures, and L2 interpolation error (black line represents N−1).
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(a) Winslow’s (3.2)

(b) Huang’s (3.7)

(c) Huang and Russell’s (3.9)

103 104 105
1

1.5

2

2.5 Winslow
Huang

HR

(d) Qeq vs. N

103 104 105
1

1.5

2

2.5 Winslow
Huang

HR

(e) Qali vs. N

103 104 105
10−4

10−3

10−2 Winslow
Huang

HR

(f) L2 error vs. N

Figure 2: Example 4.2: example meshes (left), close-ups near the wave meeting the boundary layer (middle)
and in the right bottom corner (right), mesh quality measures, and L2 interpolation error (black line represents

N−1).
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(a) Winslow’s (3.2)

(b) Huang’s (3.7)

(c) Huang and Russell’s (3.9)

103 104 105
1

1.5

2

2.5 Winslow
Huang

HR

(d) Qeq vs. N

103 104 105
1

1.5

2

2.5 Winslow
Huang

HR

(e) Qali vs. N

103 104 105
10−4

10−3

10−2 Winslow
Huang

HR

(f) L2 interpolation error vs. N

Figure 3: Example 4.1: using a metric tensor for the H1 semi-norm: example meshes (left), close-ups near
the wave tip (middle) and in the middle (right), mesh quality measures, and L2 interpolation error (black line

represents N−1).
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(a) Winslow’s (3.2) (b) Huang’s (3.7) (c) Huang and Russell’s (3.9)

(d) Winslow’s (3.2) (e) Huang’s (3.7) (f) Huang and Russell’s (3.9)

103 104 105 106
1

1.5

2

2.5 Winslow
Huang

HR

(g) Qeq vs. N

103 104 105 106
1

1.5

2

2.5 Winslow
Huang

HR

(h) Qali vs. N

103 104 105 106

10−1

Winslow
Huang

HR

(i) L2 error vs. N

Figure 4: Example 4.3: The top row: slice cuts of the meshes. The middle row: clip cuts of the meshes. The
bottom row: Qeq, Qali, and the L2 norm of the linear interpolation error (black line represents N−2/3).

on equidistribution and alignment distribute the nodes with the better correspondence
with the given M. For coarse meshes, all three functionals provide similar results (see
convergence plots in Figs. 4i, 5i, 6i); however, for fine meshes, sizing of mesh elements
obtained by means of W functional is not quite as good as for H and HR functionals, as
indicated by a larger Qeq.

Altogether, the linear interpolation error (Figs. 4i, 5i, and 6i) suggests that HR func-
tional provides the best mesh, followed by H and W functionals. One may notice from
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(a) Winslow’s (3.2) (b) Huang’s (3.7) (c) Huang and Russell’s (3.9)

(d) Winslow’s (3.2) (e) Huang’s (3.7) (f) Huang and Russell’s (3.9)

103 104 105 106
1

1.5

2

2.5 Winslow
Huang

HR

(g) Qeq vs. N

103 104 105 106
1

1.5

2

2.5 Winslow
Huang

HR

(h) Qali vs. N

103 104 105 106

10−2

10−1
Winslow
Huang

HR

(i) L2 error vs. N

Figure 5: Example 4.4: The top row: slice cuts of the meshes. The middle row: clip cuts of the meshes. The
bottom row: Qeq, Qali, and the L2 norm of the linear interpolation error (black line represents N−2/3).

Figs. 5i and 6i that the convergence of the linear interpolation error for W functional
slows down near N =105 for Examples 4.4 and 4.5, although it seems to improve as the
mesh is refined (Fig. 6i). The reason for this behaviour is not clear to us. On the other
hand, W functional has the simplest form and seems to be more economic to compute
than the other two. From tentative comparison, mesh generation using W functional
uses about one fifth to an half of the CPU time used with H or HR functional. Qualita-
tively, this is not difficult to understand since W functional is convex whereas the others
are not (although they are polyconvex).
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(a) Winslow’s (3.2) (b) Huang’s (3.7) (c) Huang and Russell’s (3.9)

(d) Winslow’s (3.2) (e) Huang’s (3.7) (f) Huang and Russell’s (3.9)

103 105 107
1

1.5

2

2.5 Winslow
Huang

HR

(g) Qeq vs. N

103 105 107
1

1.5

2

2.5 Winslow
Huang

HR

(h) Qali vs. N

103 105 107

10−1.5

10−1

10−0.5 Winslow
Huang

HR

(i) L2 error vs. N

Figure 6: Example 4.5: The top row: slice cuts of the meshes. The middle row: clip cuts of the meshes. The
bottom row: Qeq, Qali, and the L2 norm of the linear interpolation error (black line represents N−2/3).

5 Conclusions

Among the three functionals in this study, Huang and Russell’s functional consistently
provides the best mesh for piecewise linear interpolation in both two and three dimen-
sions. In all examples it leads to the best equidistribution quality and the smallest inter-
polation error. Interestingly, while it results in the best mesh alignment quality in two
dimensions, the functional gives a slightly worse mesh alignment than the other two
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functionals in three dimensions.
Meshes obtained by means of Winslow’s functional have the worst mesh equidis-

tribution (element sizing) quality and the largest interpolation error in four out of five
examples, although in three dimensions its mesh alignment is quite good and even bet-
ter than that of the meshes obtained using Huang and Russell’s functional. A possible
explanation to this behavior could be the fact that this functional does not have an explicit
mechanism to control the equidistribution property.

The behavior of Huang’s functional is somewhere in between Winslow’s and Huang
and Russell’s functionals: both in mesh quality measures and interpolation error. It pro-
vides better mesh sizing than Winslow’s functional but not quite as good as Huang and
Russell’s. On the other hand, it provides the best (or very close to the best) mesh align-
ment in all examples.

While being able to produce correct and good quality mesh concentration, Winslow’s
functional seems to have the tendency to move more points toward the area of interest
and is slightly less reliable than the other two functionals especially when the mesh is
fine. On the other hand, it has a very simple form and is more economic to compute than
the others. It can be a good choice for mesh adaptation at least for coarser meshes, for
which all of the three functionals produce comparable meshes.

Finally, it should be pointed out that the numerical experiment we conducted in this
work is limited and more work is needed to have an extensive and more complete un-
derstanding of the behavior of the meshing functionals especially in three dimensions.
Moreover, the newly developed implementation of the variational methods in [11] has
been crucial to the current study to perform substantial computations in two and three
dimensions. It is our hope that it can serve as an efficient tool for use in future studies of
mesh adaptation and movement.
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