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• “ Investigation of the problem of simultaneously concentrating a function and its Fourier
transform differed from the other problems I have worked on in two fundamental ways.
First, we solved it—completely, easily and quickly. Second, the answer was interesting—
even elegant and beautiful.” — Slepian [85] (1983).

• “ The prolate spheroidal wave functions are likely to be a better tool for the design of spectral
and pseudo-spectral techniques than the orthogonal polynomials and related functions.” —
Xiao, Rokhlin and Yarvin [101] (2001).

• “ The prolate functions are the basis that is “plug-and-play” compatible with finite element
or spectral element or other programs that employ Legendre polynomials. The claimed ad-
vantage of prolate functions is that they resolve wavy, bandlimited signals with only two
points per wavelength, whereas Legendre polynomials and Chebyshev polynomials require
a minimum of π degrees of freedom per wavelength.” — Boyd [9] (2013).

1 Introduction

Claude E. Shannon (1916–2001) once posed the question: To what extent are functions, which
are confined to a finite bandwidth, also concentrated in the time domain? (cf. [60]). This open
question was answered by David Slepian (1923-2007) et al. at Bell Laboratories in a series
of seminal papers dated back to 1960s (see e.g., [53, 83, 86]). “ We found a second-order dif-
ferential equation that commuted with an integral operator that was at the heart of the problem,”
as commented by D. Slepian in [85]. This statement best testifies to their findings: the
prolate spheroidal wave functions of order zero (PSWFs), being the eigenfunctions of a
second-order singular Sturm-Liouville equation, are coincidentally the spectrum of an
integral operator related to the finite Fourier transform. It is also from the latter that a
collection of remarkable properties of PSWFs was discovered. For example, PSWFs are
bi-orthogonal in the sense that they are orthogonal over both a given finite interval and
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the whole line (−∞,∞); PSWFs are bandlimited functions; they are maximally concen-
trated within a finite time interval, and among others. Attributed to the contribution of
D. Slepian, PSWFs are also termed as Slepian functions or Slepian basis.

There have been limited studies and applications of PSWFs over the first two decades
after the seminal works of Slepian et al. ““Prolate Revivial” is by Xiao, Rokhlin and Yarvin
[101]; recent articles include [41, 47, 107],” as remarked by Boyd in the Book Review [9, P.
575] for Hogan and Lakey [36]. The recent monograph by Osipov, Rokhlin and Xiao [66]
provided a comprehensive exposition of analytic, asymptotic properties, and numerics
of PSWFs of order zero. It was meant to be in the spirit of classical texts such as A Treatise
on the Theory of Bessel Functions by G. Watson [97]. As stated in the Preface, this book
however touched very briefly on the wide-ranging applications of PSWFs. The book [36]
targeted at the applications of PSWFs in sampling and signal processing, together with
an accessible introduction to the mathematical theory related to PSWFs. However, it is far
and away the best and most comprehensive review of modern numerical applications of
prolate expansions (cf. [9]). Boyd et al. tabulated and highlighted in [10] more than thirty
selected recent works on PSWFs.

In general, the research on PSWFs can be clarified into the following categories:

(i) Study of their analytic and asymptotic properties, numerical evaluations, prolate
quadrature, interpolation and related issues (see, e.g., [4, 6, 8, 25, 37, 40, 43, 60, 66, 70,
73, 91, 99–101]);

(ii) Generalization of the Slepian’s time-frequency concentration problem on a finite in-
terval to other geometries, or introduction of generalized PSWFs in different senses
(see, e.g., [20, 21, 30, 41, 42, 49, 59, 62, 68, 69, 81–83, 88, 94, 103]);

(iii) Development of numerical methods using PSWFs as basis functions, e.g., spectral/
spectral-elements methods (see, e.g., [5, 7, 10, 13, 50, 51, 92, 107]), and wavelets (see,
e.g., [15, 88–90]).

(iv) Diverse applications in sampling, signal processing, time series analysis and image
processing (see, e.g., [12, 17, 26, 27, 35, 38, 46, 57, 74]).

This paper is devoted to a review of the PSWFs from the perspective of spectral and
spectral-element methods. As the eigenfunctions of a singular Sturm-Liouville problem,
the PSWFs are born with the orthogonality and completeness in L2-space as with their
counterparts–Legendre polynomials, so they can be a candidate for a basis of spectral
algorithms. Then a natural question to ask is why should the PSWF-based method be the
method of choice in place of the polynomial-based counterpart (perhaps for certain problems)? We
hope to provide an answer to this question in what follows.

Firstly, the essence of Slepian’s findings resides in that the PSWFs are simultaneously
eigenfunctions of an integral operator related to the finite Fourier transform. As a result,
they form an orthogonal basis of the Paley-Wiener space of c-bandlimited functions, and
serve as an optimal basis for approximating bandlimited functions.
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Secondly, PSWFs, as a generalization of Legendre polynomials, oscillate more uni-
formly than Legendre polynomials and any other Jacobi polynomials, as the bandwidth
parameter c increases in a range. Thus, a better resolution can be achieved for approxi-
mation by PSWFs. Indeed, the study in e.g., [7] shows that the PSWFs only require two
points per wavelength to resolve wavy, bandlimited signals, whereas Legendre polyno-
mials and Chebyshev polynomials require a minimum of π points. The nearly uniform
oscillations of PSWFs can relax the constraints of explicit time-discretization coupled
with spatial approximations by spectral/spectral-element methods. However, the spec-
tral grids are non-uniform and denser near the boundaries, which therefore suffer from
a much severer constraint related to the Courant-Friedrichs-Lewy (CFL) condition than
the uniform-grid-based methods. To overcome this difficulty, one might resort to semi-
implicit and fully implicit time-discretization schemes, but they require robust solvers for
the resultant systems when the scale is large. It is worthwhile to point out that Kosloff
and Tal-Ezer [48] proposed a mapped spectral method to obtain an O(N−1)-CFL con-
traint Runge-Kutta method for first-order problems. However, the error analysis in [78]
indicates that the accuracy is deteriorated for the suggested parameter in [48]. The pro-
late points are quasi-uniformly distributed. Shifting the points and basis from Legendre
to PSWF can be accomplished in a compatible “plug-and-play” manner (cf. [8]). Chen,
Gottlieb and Hesthaven [13] studied the prolate-pseudospectral method for first-order
equations, and a relaxation of the CFL condition from O(N−2) for the Legendre and
Chebyshev spectral methods to O(N−3/2) for PSWFs was observed with suitable choice
of the bandwidth parameter c. A similar gain in prolate-elements for advection problems
on the sphere was found in [107].

A critical issue in using PSWFs as basis functions is the choice of bandwidth param-
eter c. A rule of thumb is that one should choose c= c(N) to achieve better uniformity
of grid distribution without loss of spectral accuracy. Note that for c ≫ N, the PSWFs
behave like Hermite functions (cf. [7, (17)]), so they decay to zero in the neighbourhoods
of the endpoints x=±1. In this case, the PSWFs lose the approximability to general func-
tions on (−1,1). A “transition bandwidth” derived from asymptotic formulas of PSWFs
(cf. [58, 84]): c∗(N) =π(N+1/2)/2 was recommended by [7], where the feasible range
of c should be 0< c< c∗(N). However, both numerical evidences and analysis indicate
that the choice of c close to c∗(N) degrades the accuracy. A more reliable upper bound
was derived in Wang and Zhang [95] (see Theorem 4.3). From a different perspective,
Kong and Rokhlin [47] proposed a useful rule for pairing up (c,N). The essential idea is
that given the bandwidth parameter c, one chooses N such that the prolate quadrature
rule is exact for complex exponentials and bandlimited functions to a prescribed accu-
racy. Such a rule appears more reasonable as the PSWFs can best approximate the class
of c-bandlimited functions. We remark that a more practice route to implement this rule
can be found in [96].

It is beneficial to employ PSWF-spectral/spectral-element methods, when the un-
derlying solution is wavy or almost bandlimited. However, PSWFs are anyhow a non-
polynomial basis, and might lose certain capabilities of polynomials, when they are used
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for solving PDEs. For example, they exhibit the nonconvergence of h-refinement in
prolate-element methods, which was first pointed out by Boyd et al. [10] by simply exam-
ining hp-prolate approximation of the trivial function u(x)=1. Indeed, PSWFs also lack
some properties of polynomials which are important for efficient spectral algorithms.
Therefore, a naive extension of existing algorithms to this setting might be unsatisfactory
or fail to work at times, so the related numerical issues are worthy of investigation.

The purpose of this paper is to review the state-of-the-art in spectral and spectral-
element methods using PSWFs as basis functions. As outlined in Contents, with some
introduction of the background and properties of PSWFs, we then focus on the building
blocks for spectral algorithms, and on the related spectral approximations results, and
applications of prolate spectral/spectral-element methods. We conclude the paper with
several relevant generalisations of PSWFs.

2 Prolate spheroidal wave functions

In this section, we briefly review the two contexts, from which the PSWFs of order zero
arise, and collect some important properties of PSWFs (cf. [36, 66, 83, 85, 86, 101]).

2.1 Bandlimited functions

Let L2(R) be the space of square integrable functions on the whole line R :=(−∞,∞). For
any function f (t)∈L2(R), we have the Fourier transform and inverse Fourier transform:

F (ω)=
∫ ∞

−∞
f (t)e−iωt dt; f (t)=

1

2π

∫ ∞

−∞
F (ω)eiωt dω. (2.1)

There holds the Parseval’s identity:

∫ ∞

−∞
f (t)g∗(t)dt=

1

2π

∫ ∞

−∞
F (ω)G ∗(ω)dω, (2.2)

where the notation “ ∗ ” stands for the complex conjugate.
We are interested in a subclass of functions f (t) ∈ L2(R), whose Fourier transform

F (ω) vanishes if |ω|>W for some bandwidth parameter W>0. Such a function f is called
W-bandlimited. The space of all W-bandlimited functions is known as the Paley-Wiener
space, defined by

BW =
{

f ∈L2(R) : supp
(
F (ω)

)
⊂ [−W,W]

}
. (2.3)

As an essential characterisation of a W-bandlimited function, the Paley-Wiener theorem
[67] states that f is W-bandlimited, if and only if

f (t)=
∫ W

−W
e−iωtg(ω)dω, for some g∈L2(−W,W), (2.4)
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and if and only if f is an entire function in L2(R) and of exponential type, i.e.,

| f (z)|≤sup
x∈R

| f (x)| eW|y|, z= x+iy.

A fundamental sampling theorem says that (see, e.g., [102]): if f ∈ BW , then it can be
completely reconstructed from the sample { f (jπ/W)}j∈Z (where Z is the set of all integers),
namely,

f (t)= ∑
j∈Z

sinW(t−tj)

W(t−tj)
f (tj), tj =

jπ

W
.

It is known that any nontrivial signal cannot be simultaneously bandlimited and time-
limited, that is, a function and its Fourier transform cannot both have finite support. Then
a natural question to ask is: Given a fixed interval, say, (−T/2,T/2), to what extent that the
energy of f (t)∈BW can be concentrated on this interval? This is basically the time-frequency
concentration problem that attracted much attention of D. Slepian et al. in 1960s [85]. The
problem of interest was actually boiled down to the study of the Fredholm integral equa-
tion of the second kind: find µ∈R and ψ such that

Qc[ψ](x) :=
∫ 1

−1

sinc(x−t)

π(x−t)
ψ(t)dt=µψ(x), c>0, (2.5)

where x is in the reference interval Λ :=(−1,1), and c=πWT is also called the bandwidth
parameter. Using the fundamental identity:

σc(t) :=
sinct

πt
=

c

2π

∫ 1

−1
eicωt dω, (2.6)

one verifies readily that

Qc[φ](x)=
2π

c

(
F ∗

c ◦Fc

)
[φ](x), (2.7)

where

Fc[φ](x) :=
∫ 1

−1
eicxtφ(t)dt, F ∗

c [φ](x) :=
∫ 1

−1
e−icxtφ(t)dt. (2.8)

Remark 2.1. We see from (2.6) that the Fourier transform of σc(t) is c·χ
[−1,1]

(ω) (where

χ
[−1,1]

(ω) is the indicate function of the interval [−1,1]), so σ is 1-bandlimited. Noting that

σc(t) is an even function, we find from (2.6) that the Fourier transform (in t) of σc(x−t)(=
σc(t−x)) is c·e−ixωχ

[−1,1]
(ω). Thus, by the Parseval’s identity (2.2) and (2.6),

∫ ∞

−∞

sinc(x−t)

π(x−t)
· sinc(t−y)

π(t−y)
dt= c· sinc(x−y)

π(x−y)
. (2.9)

It is a very useful identity for the derivation of the orthogonality (2.16) below.
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Based on the standard spectral theory (cf. [14]), the operator Qc has a countable set of
spectrum and eigenfunctions {(µn,ψn)}∞

n=0, namely,

∫ 1

−1

sinc(x−t)

π(x−t)
ψn(t;c)dt=µn(c)ψn(x;c), n≥0, c>0, (2.10)

with the properties:

(i) all the eigenvalues are distinct, real and positive, and can be ordered as

µ0(c)>µ1(c)> ···>µn(c)> ···>0 (note : lim
n→∞

µn(c)=0); (2.11)

(ii) the corresponding eigenfunctions {ψn}∞
n=0 are orthogonal and complete in L2(Λ),

which are conventionally normalized as

∫ 1

−1
ψn(x;c)ψm(x;c)dx=δmn =

{
0, if m 6=n,

1, if m=n.
(2.12)

The function ψn(x;c) is termed as the PSWF of degree n with bandwidth c.
The relation (2.7) implies that Qc and Fc share the same eigenfunctions {ψn}∞

n=0 :

inλn(c)ψn(x;c)=
∫ 1

−1
eicxtψn(t;c)dt, n≥0, (2.13)

where the corresponding eigenvalues {λn(c)} (modulo the factor in) are all real, positive
and simple. Moreover, we have the relation:

µn(c)=
c

2π
λ2

n(c) or λn(c)=

√
2π

c
µn(c) , (2.14)

so by (2.11), {λn(c)} are in descending order and λn(c)→0 as n→∞.

Remark 2.2. One verifies from (2.13) and the parity (see (2.28) below) that

ψn(x;c)=
in

cλn(c)

∫ c

−c
ψn

(ω

c
;c
)

e−iωxdω, (2.15)

so by (2.4), the PSWF ψn(x;c) is c-bandlimited.

Remark 2.3. Observe from (2.10) and (2.13) that {ψn(x;c)} are well-defined for all x∈R.
Surprisingly, they are also mutually orthogonal on R :

∫ ∞

−∞
ψn(x;c)ψm(x;c)dx=

1

µn(c)
δmn, (2.16)

which follows from (2.9)-(2.10) (see [86]).
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Remark 2.4. An analogue of (2.13) for the Fourier transform is associated with the Her-
mite functions (cf. [18, P. 22]):

∫ ∞

−∞
Hn(t)e

−iωt dt=(−i)n
√

2πHn(ω), n=0,1,··· , (2.17)

where Hn(t) is the Hermite function defined by the Hermite polynomial Hn(t) of degree
n as follows:

Hn(t)=(2nn!
√

π)−1/2e−t2/2Hn(t), Hn(t)=(−1)net2 dn

dtn
{e−t2}. (2.18)

This analytic tool played an important part in developing efficient spectral methods for
scattering problems with unbounded rough scattering surfaces [33]. It is also noteworthy
that Li [54] used (2.17) with ω=ia (for any complex number a) in the convergence analysis
of the Hermite expansion of the Riemann Zeta function.

Hereafter, we shall not always specify the dependence of the notation on the band-
width parameter c, whenever it is clear from the context.

2.2 Sturm-Liouville equation

One significant discovery of D. Slepian et al. is that the integral operators in (2.8) are
commutable with the second-order differential operator:

Dc
x =− d

dx
(1−x2)

d

dx
+c2x2, (2.19)

in the sense that

Dc
x

∫ 1

−1

sinc(x−t)

π(x−t)
ψn(t)dt=

∫ 1

−1

sinc(x−t)

π(x−t)
Dc

t ψn(t)dt. (2.20)

Thus {ψn} are also eigenfunctions of the singular Sturm-Liouville problem:

Dc
xψn(x)=χn ψn(x), x∈Λ=(−1,1), n≥0, (2.21)

where {χn} are the corresponding eigenvalues such that

0<χ0<χ1< ···<χn < ··· ; lim
n→∞

χn =∞. (2.22)

The eigen-problem (2.21) arises from solving the Helmholtz equation in prolate spheroidal
coordinates by separation of variables. It is a special case of the spheroidal wave equation
(see (6.2) below) with m=0, so we call the eigenfunctions PSWFs of order zero.

Recall that the Legendre polynomials {Pn(x)} satisfy

D0
xPn(x)=−

(
(1−x2)P′

n(x)
)′
=n(n+1)Pn(x), (2.23)
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and the three-term recurrence relation (cf. [87]):

(n+1)Pn+1(x)=(2n+1)xPn(x)−nPn−1(x), n≥1,

P0(x)=1, P1(x)= x.
(2.24)

We also use the orthonormal Legendre polynomials defined by

Pn(x)=

√
n+

1

2
Pn(x), so

∫ 1

−1
Pn(x)Pm(x)dx=δmn. (2.25)

We see that PSWFs are generalization of Legendre polynomials, as

ψn(x;0)=Pn(x), χn(0)=n(n+1). (2.26)

Remark 2.5. The integral equation (2.13) does not hold when c= 0. In other words, the
Legendre polynomials are not bandlimited, which can also be seen from the formula
(see [22, P. 213]):

∫ 1

−1
Pn(ω)e−iωx dω=(−i)n(2n+1)

√
π

2

Jn+1/2(x)√
x

, (2.27)

where the Bessel function Jn+1/2(·) is not compactly supported. On the other hand, we
have from (2.4) that the Fourier transform of Jn+1/2(x)/

√
x is Pn(x) up to a constant

multiple, so it is bandlimited. Since a function and its Fourier transform can not both
have a finite support, Pn(x) is not bandlimited, as opposite to the PSWF (see (2.15)).

2.3 Analytic and asymptotic properties

We collect some relevant properties of PSWFs, and refer to [66] for many others.

• We have the parity
ψn(−x;c)=(−1)nψn(x;c), (2.28)

so ψn(x;c) with even n is even in x, but it is an odd function when n is odd.

• The PSWF ψn(x;c) has exactly n real distinct zeros in the interval (−1,1). How-
ever, unlike the Legendre polynomial, it also has infinitely many real zeros outside
(−1,1) (cf. [66]).

• For fixed c>0 and large n, we have

ψn(x;c)=Pn(x)+
c2

16n

(
Pn−2(x)−Pn+2(x)

)
+O

( c2

n2

)
. (2.29)

For large c and fixed n, PSWFs behave like scaled Hermite functions:

ψn(x;c)∼ e−cx2/2Hn(
√

cx). (2.30)
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• We have the uniform bounds:

n(n+1)<χn(c)<n(n+1)+c2, n≥0, c>0. (2.31)

For fixed c and large n, we have (see [70, (64)]):

χn(c)=n(n+1)+
c2

2
+

c2(4+c2)

32n2

(
1− 1

n
+O(n−2)

)
, ∀n≫1. (2.32)

For fixed n and large c, χn(c) behaves like (see [100, (1.1)]):

χn(c)= c(2n+1)− n2+n+3/2

2
+O(c−1), ∀c≫1. (2.33)

• We have the representation for λn(c) in terms of ψn(1;c) (see [70, Thm. 9]):

λn(c)=

√
πcn(n!)2

(2n)!Γ(n+3/2)
·exp

(∫ c

0

(2(ψn(1;τ))2−1

2τ
− n

τ

)
dτ

)
, ∀c>0. (2.34)

We have (cf. [92]):

λn(c)<

√
πcn(n!)2

(2n)!Γ(n+3/2)
:=νn(c), ∀c>0. (2.35)

3 Numerics of PSWFs and prolate-differentiation schemes

In this section, we discuss the essential building blocks for spectral methods using PSWFs
as basis functions. We start with introducing efficient algorithms for computing PSWFs
and the associated eigenvalues {χn(c)} and {λn(c)}. We then introduce the prolate
points, quadrature rules, prolate interpolation and pseudospectral differentiation in a
manner analogue to the polynomial-based spectral algorithms [77]. More importantly,
we highlight the Kong-Rokhlin’s rule in [47] for paring up (c,N), and present a stable
way to compute the approximate “inverse” of the pseudospectral differentiation in [96],
which can lead to a well-conditioned prolate-collocation method for BVPs. We reiterate
that PSWFs are non-polynomials, lacking some important properties of orthogonal poly-
nomials, so some care must be taken to build and assemble these pieces of the puzzle.

3.1 Evaluation of PSWFs and the associated eigenvalues

Boyd [8] provided the algorithms and Matlab codes for computing the PSWFs, eigen-
values and their zeros etc.. The recent work [73] had deeper insights into the truncation
of the infinite eigensystem where the Legendre-Galerkin method was applied to solve
the Sturm-Liouville problem (2.21). One can refer to [66] for some delicate algorithms to
enhance the codes in [8] for certain range of the parameters.
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By expanding ψn(x) in terms of orthonormal Legendre polynomials:

ψn(x)=
∞

∑
k=0

βnkPk(x) with βnk =
∫ 1

−1
ψn(x)Pk(x)dx, (3.1)

we derive from the orthogonality the Parseval’s identity:

∞

∑
k=0

|βnk|2=1, ∀ n≥0. (3.2)

By the parity, we have βnk=0, if n+k is odd. Inserting (3.1) into (2.21), we find from (2.19)
and (2.23)-(2.25) that

Aβn =χn βn , ∀ n≥0, (3.3)

where βn = (βn0,βn1,···)t, and A = (ank) is an infinite symmetric peta-diagonal matrix
with non-zeros entries

ak,k = k(k+1)+
2k(k+1)−1

(2k+3)(2k−1)
·c2,

ak,k+2= ak+2,k =
(k+1)(k+2)

(2k+3)
√

(2k+1)(2k+5)
·c2.

(3.4)

The infinite system (3.3) can be decomposed into two symmetric tri-diagonal systems:

Aeβe
n =χe

n βe
n, n=2l; Aoβo

n =χo
n βo

n, n=2l+1, (3.5)

where Ae (resp. Ao) consists of even-numbered (resp. odd-numbered) rows and columns
of A, and βe

n =(βn0,βn2,···)t (resp. βo
n=(βn1,βn3,···)t).

In the computation, we have to reduce the infinite eigensystem (3.3). More precisely,
to evaluate the first (N+1)-PSWFs and eigenvalues {ψn,χn}N

n=0, we approximate the
PSWF by

ψn(x)≈
M

∑
k=0

βnkPk(x), (3.6)

with a suitable cut-off number M>N. Boyd [6] suggested a cut-off number for (3.6): M≥
2N+30, which guaranteed a machine zero accuracy for computing {χn(c),ψn(x;c)}N

n=0

for all

0< c≤ c∗(N)=
π

2

(
N+

1

2

)
. (3.7)

Schmutzhard et al. [73] provided insightful observations on the choice of M for a pre-
scribed accuracy.

We next present some stable formulas for computing the eigenvalues {λn(c)} of the
integral operator (see [92]), where we note that the magnitude of λn(c) with c > 0 is
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exponentially small for large n. Taking x = 0 in (2.13), and using (3.1) and the property
P0(x)=1/

√
2, we have

inλn(c)ψn(0;c)=
∫ 1

−1
ψn(t;c)dt=

√
2βn0. (3.8)

The parity of PSWFs and the fact that ψn(x;c) has exact n real roots in (−1,1), imply that
ψn(0;c) 6=0 for even n, while ψn(0;c)=0 for odd n. Therefore, we can compute

λ2k(c)=(−1)k

√
2β2k,0

ψ2k(0;c)
, k≥0. (3.9)

To compute λ2k+1(c), we differentiate (2.13) with respect to x and then take x=0, leading
to

λ2k+1(c)=
c

i2k∂xψ2k+1(0;c)

∫ 1

−1
tψ2k+1(t;c)dt=(−1)k

√
2

3

cβ2k+1,1

∂xψ2k+1(0;c)
. (3.10)

In the above, we used (3.1) and P1(t)=
√

3/2t.

Remark 3.1. Although the magnitude of λn(c) with c>0 is exponentially small for large n,
its evaluation through (3.9)–(3.10) is stable since the values of |ψ2k(0;c)| and |∂xψ2k+1(0;c)|
are bounded away from zero for all k.

3.2 Kong-Rokhlin’s rule

As already mentioned in the introductory section, it is important to choose the bandlimit
parameter c to construct accurate approximation schemes on quasi-uniform grids. It is
believed that one should choose c depending on N, and a quite safe choice is c = N/2
(see, e.g., [13, 92]).

Kong and Rokhlin [47] proposed a useful rule for pairing up c and N. The starting
point is a prolate quadrature rule, say (3.21). We know from [101] that it has the accuracy
for the complex exponential eicax :

∣∣∣
∫ 1

−1
eicax dx−

N

∑
j=0

eicaxj ωj

∣∣∣=O(λN). (3.11)

Furthermore, for a bandlimited function of bandwidth c defined in (2.4) with W = c, we
have (see [101, Remark 5.1])

∣∣∣
∫ 1

−1
f (x)dx−

N

∑
j=0

f (xj)ωj

∣∣∣≤ ε‖g‖L2(−1,1), (3.12)

where ε is the maximum error of integration of a single complex exponential as in (3.11).
In view of this, Kong and Rokhlin [47] suggested the rule: given c and an error tolerance
ε, choose the smallest integer N∗=N∗(c,ε) such that

λN∗(c)≤ ε≤λN∗−1(c). (3.13)
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Wang et al. [96] introduced a practical mean to implement this rule, which did not
require computing the eigenvalues {λN}. The essential idea was to replace λN(c) by its
tight explicit bound, which converted the problem of finding N∗ for given c and ε to
locate the root of the algebraic equation: Fε(x;c)=0 where

Fε(x;c) := xlog
ec

4
−
(

x+
1

2

)
log

(
x+

1

2

)
+

1

6x
+log

1

ε
+

1

2
log

πe

2
, x≥1. (3.14)

As shown in [96], it has a unique root x∗>1, so we take N∗=[x∗] (i.e., the integer part of
x∗).

3.3 Prolate points and prolate quadrature

The grid points of spectral and spectral-element methods are usually chosen as nodes of
a certain Gaussian quadrature rule, which enjoys the highest degree of precision (DOP)
for polynomials. For example, let {ξ j}N

j=0 be the Legendre-Gauss-Lobatto (LGL) points

(i.e., zeros of (1−x2)P′
N(x)), and {ρj}N

j=0 be the corresponding quadrature weights given

by

ρj =
2

N(N+1)

1

P2
N(xj)

, 0≤ j≤N. (3.15)

Then the LGL quadrature has the exactness (see, e.g., [11, 77]):

∫ 1

−1
Pn(x)dx=

N

∑
j=0

Pn(ξ j)ρj, 0≤n≤2N−1, (3.16)

which, in other words, is exact for all v∈P2N−1 (the set of all algebraic polynomials of
degree at most 2N−1). It is known from the standard textbook on numerical analysis
that Euclidean division of polynomials plays an essential role in the context of Gaussian
quadrature. Basically, for every pair of polynomials (s,p) such that p 6= 0, polynomial
division provides a quotient q and a remainder r such that

s(x)= p(x)q(x)+r(x), (3.17)

and either r = 0 or deg(r)< deg(q). Moreover, (q,r) is the unique pair of polynomials
having this property.

Unfortunately, the property (3.17) does not hold for PSWFs. Moreover, unlike poly-
nomials, the operations in (3.19) below are not closed in the vector space

Vc
N =span

{
ψn(x;c) : 0≤n≤N

}
. (3.18)

That is, for any ψn,ψm∈Vc
N ,

∂xψn 6∈Vc
N−1,

∫
ψn dx 6∈Vc

N+1, ψn ·ψm 6∈Vc
2N , ∀ c>0. (3.19)

In view of (3.19), we can not expect to have a “perfect” quadrature rule like (3.16). In
practice, several rules have been proposed (see, e.g., [7, 101] and [66, Ch. 9]).
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• The first is to pursue the highest DOP over the 2N-dimensional space Vc
2N−1 (cf.

[6, 7]). More precisely, we fix x0 = −1,xN = 1, and search for quadrature nodes
{xj}N−1

j=1 and weights {ωj}N
j=0 such that

∫ 1

−1
ψn(x)dx=ψn(−1)ω0+

N−1

∑
j=1

ψn(xj)ωj+ψn(1)ωN , 0≤n≤2N−1. (3.20)

This requires to solve a nonlinear system to compute the nodes and weights. We
refer to Boyd [6] for the detailed algorithm and codes.

• A second proposal is to choose the nodes {xj}N
j=0 as zeros of (1−x2)∂xψN(x) (see,

e.g., [8, 13, 51]), analogue to the LGL case, which are therefore referred to as the
prolate-Lobatto (PL) points. The quadrature weights {ωj}N

j=0 are determined by

∫ 1

−1
ψn(x)dx=

N

∑
j=0

ψn(xj)ωj, 0≤n≤N, (3.21)

where by (3.8), the integral on the left side is
√

2βn0. Note that this rule only has a
DOP over Vc

N, but not over Vc
2N−1 as for polynomials.

We remark that Xiao et al. [101, Thm. 6.3] considered the Guassian rule (where the
nodes were zeros of ψN+1) and analysed the quadrature error for general continu-
ous functions based on the Euclidean division of bandlimited functions.

• Osipov and Rokhlin [65] proposed a prolate-Gaussian quadrature by taking the
nodes {xj}N

j=0 as zeros of ψN+1(x) and computing the weights via

ωj =
∫ 1

−1

ψN+1(x)

ψ′
N+1(x)(x−xj)

dx, 0≤ j≤N. (3.22)

Although it lacks the exactness like (3.21), it can be shown

∣∣∣∣
∫ 1

−1
ψn(x)dx−

N

∑
j=0

ψn(xj)ωj

∣∣∣∣≤λN+1

(
6χN+1−24logλN+1

)
, 0≤n≤N. (3.23)

Note that one can extend this rule to the Lobatto quadrature.

We see from the above that it is necessary to compute the zeros of PSWF or the deriva-
tive of PSWF. Boyd [8] described the Newton’s iteration method with some care in select-
ing initial guesses. Alternatively, one can use the general algorithm in [25] for computing
zeros of special functions satisfying the differential equation:

p(x)u′′(x)+q(x)u′(x)+r(x)u(x)=0,
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where p,q,r are quadratic polynomials. Indeed, the Sturm-Liouville problem (2.21) falls
into this category. With the zeros of ψn, one can locate the zeros of ψ′

N by Newton’s
iteration with the initial guess {(tj+tj+1)/2}N−1

j=1 , where {tj}N
j=1 are zeros of ψN . In fact,

as shown in [66], ψ′
n has n−1 zeros in (−1,1) that interlace with n zeros of ψn, when

χn > c2.

Remark 3.2. In the context of prolate pseudospectral/collocation approaches, there is
very subtle difference between the sets of points (also see [13]). Hereafter, we shall restrict
to the PL points.

3.4 Prolate interpolation, cardinal basis and pseudospectral differentiation

Let {xj}N
j=0 be the PL points and Vc

N be the space defined in (3.18). Consider the prolate-

interpolation problem:

Find p∈Vc
N such that p(xj)=u(xj), 0≤ j≤N, (3.24)

for any u∈C[−1,1]. Like polynomial interpolation, we define the interpolation operator:
I c

N : C[−1,1]→Vc
N by

(I c
Nu)(x)=

N

∑
k=0

u(xk)hk(x;c), (3.25)

where the cardinal basis functions hk ∈Vc
N and satisfy

hk(xj;c)=δkj, 0≤ k, j≤N, c>0. (3.26)

If c=0, they reduce to the Lagrange basis polynomials associated with LGL points {ξk}N
k=0:

h̃k(x)=
s(x)

s′(ξk)(x−ξk)
, 0≤ k≤N with s(x)=(1−x2)P′

N(x). (3.27)

Alternatively, we have the representation:

h̃k(x)=
N

∑
j=0

ρk

γ̃j
Pj(ξk)Pj(x), 0≤ j≤N, (3.28)

where {ρk} are LGL quadrature weights defined in (3.15), γ̃j=2/(2j+1) for 0≤ j≤N−1,
and γ̃N =2/N.

When it comes to PSWFs, the representations (3.27) and (3.28) are not equivalent.
Following (3.28), we write

hk(x)=
N

∑
n=0

tnk ψn(x), (3.29)
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and determine {tnk} from the interpolation conditions (3.26). More precisely, introducing

the matrices Ψ
(m),T,D(m)∈R

(N+1)×(N+1) with the entries

Ψ
(m)
jk =ψ

(m)
k (xj), Tnk= tnk, D

(m)
jk =h

(m)
k (xj), (3.30)

and denoting Ψ=Ψ
(0), we have ΨT = IN+1, so T =Ψ

−1. By (3.29), the mth-order prolate
differentiation matrix is computed by

D(m)=Ψ
(m)

Ψ
−1, m≥1, (3.31)

where for m=0, we have D(0)= IN+1. It implies

D(m)
Ψ=Ψ

(m), D(m)φ=φ(m), (3.32)

where for any φ∈Vc
N , φ(m)=(φ(m)(x0),··· ,φ(m)(xN))

t and φ=φ(0).

Following (3.27), we define

lk(x)=
s(x)

s′(xk)(x−xk)
, 0≤ k≤N with s(x)=(1−x2)ψ′

N(x). (3.33)

One verifies readily that for c>0,

lk(xj)=δjk, 0≤ k, j≤N, but lk 6∈Vc
N , 0≤ k≤N. (3.34)

Correspondingly, we define the mth-order differentiation matrix D̂
(m)

with the entries

D̂
(m)
jk = l

(m)
k (xj) for 0≤ k, j≤N. We refer to [96, Appendix A] for the explicit formulas for

the entries of D̂
(1)

and D̂
(2)

, which only involve the function values {ψN(xj)}N
j=0.

In what follows, let D
(2)
in ∈R

(N−1)×(N−1) be the matrix obtained by deleting the first

and last rows and columns of D(2), and likewise for D̂
(2)
in .

3.5 “Inverse” of prolate pseudospectral differentiation matrix

In this section, we review the approach in [96] for computing the approximate “inverse”

of D
(2)
in or D̂

(2)
in in a stable manner. With this, we can precondition the prolate-collocation

method, leading to well-conditioned collocation schemes. Moreover, we can derive a
new basis in the course from which we can also construct well-conditioned collocation
methods.

We essentially extend the idea for polynomials in [19,34,93] to the PSWFs. That is, we
look for a matrix Bin∈R

(N−1)×(N−1) such that

D
(2)
in Bin≈ IN−1, BinD

(2)
in ≈ IN−1, (3.35)
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for large N, and likewise for D̂
(2)
in . Such a matrix is generated from a new basis obtained

from the generalised Birkhoff interpolation. Let {xj}N
j=0 be the PL points with x0=−xN=

−1. Define

B0(x)=
1−x

2
, BN(x)=

1+x

2
, (3.36)

and for 1≤ k≤N−1, we look for

Bk∈Wc,0
N :=span

{
φn : φ′′

n(x)=ψn(x) with φn(±1)=0, 0≤n≤N−2
}

, (3.37)

such that
B′′

k (xj)=δjk, 1≤ j≤N−1, Bk(±1)=0, 1≤ k≤N−1. (3.38)

By construction, the new basis {Bk} is associated with the generalized Birkhoff inter-
polation problem, that is, given u∈C2(−1,1), find p∈Wc,0

N ∪P1 such that

p(−1)=u(−1); p′′(xj)=u′′(xj), 1≤ j≤N−1; p(1)=u(1), (3.39)

as we can express the interpolant as

p(x)=u(−1)B0(x)+
N−1

∑
k=1

u′′(xk)Bk(x)+u(1)BN(x). (3.40)

We first consider how to compute the new basis {Bk}. Solving the ordinary differential
equation in (3.37) directly leads to

φn(x)= x
∫ x

−1
ψn(t)dt−

∫ x

−1
tψn(t)dt+

1+x

2

∫ 1

−1
(t−1)ψn(t)dt. (3.41)

Then we compute {Bk}N−1
k=1 , by writing

Bk(x)=
N−2

∑
n=0

αnkφn(x), so B′′
k (x)=

N−2

∑
n=0

αnkψn(x). (3.42)

Thus we can find the coefficients {αnk} by B′′
k (xj)=δjk with 1≤ k, j≤N−1, that is,

A= Ψ̄
−1

where Ank=αnk, Ψ̄jn =ψn(xj), (3.43)

for 1 ≤ j,k ≤ N−1 and 0≤ n ≤ N−2. Thus, we can compute {Bk} by (3.42). Define the
matrices

B=(bij)0≤i,j≤N, Bin =(bij)1≤i,j≤N−1, bij :=Bj(xi). (3.44)

Now, we justify (3.35). Let I c
N be the prolate-interpolation operator defined in (3.25).

Clearly, we have

I c
N Bk(x)=

N

∑
j=0

Bk(xj)hj(x;c), (3.45)
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and for 1≤ k≤N−1,

(I c
N Bk)

′′(xi)=
N

∑
j=0

Bk(xj)h
′′
j (xi;c)=

N−1

∑
j=1

Bk(xj)h
′′
j (xi;c), 1≤ i≤N−1, (3.46)

where in the last step, we used the fact: Bk(±1)=0.
Let

ek(x)=I c
N Bk(x)−Bk(x).

With this, we derive from (3.38) and (3.46) that

e′′k (xi)+δik =
N−1

∑
j=1

Bk(xj)h
′′
j (xi;c), 1≤ i,k≤N−1, (3.47)

This implies

D
(2)
in Bin− IN−1=E(2), E(2)=(e′′k (xi))1≤i,k≤N−1. (3.48)

Note that the entries of E(2) are the second derivative of prolate-interpolation errors of
{Bk} (which are analytic functions). It is expected that they decay exponentially when N
is large. However, the estimate of interpolation error I c

Nu−u remains open, though we
can estimate the L2-orthogonal projection error (see, e.g., [13, 95]). We therefore have the
first relation in (3.35).

In fact, we can justify the second relation of (3.35) in a similar fashion. Let Ĩ c
N be the

generalized Birkhoff-interpolation operator associated with (3.39), i.e., Ĩ c
Nu= p in (3.40).

Therefore, for 1≤ j≤N−1, we can write

Ĩ c
Nhj(xi)=

N−1

∑
k=1

h′′j (xk)Bk(xi), 1≤ i≤N−1, (3.49)

so similarly, we understand the ”approximately equal” in (3.35) due to the interpolation

errors: (Ĩ c
Nhj−hj)(xi).

Remark 3.3. The above approach also applies to the cardinal basis {lj} and the corre-

sponding prolate-differentiation matrix D̂
(2)
in .

We demonstrate in Figure 1 (see [96, Fig. 3.4]) the growth of the magnitude of the

largest and smallest eigenvalues of D
(2)
in and D̂

(2)
in , compared with the Legendre case,

where (c,N) is once again paired up by the approximate Kong-Rokhlin’s rule. We ob-
serve a much slower growth of the largest eigenvalue, so the condition number of the
differentiation matrix is much smaller. We also see that the magnitude of the smallest
eigenvalue behaves like a constant.

We depict in Figure 2 (see [96, Fig. 5.1]) the distribution of the largest and smallest

eigenvalues of BinD
(2)
in and BinD̂

(2)
in at the PL points. We see that all their eigenvalues for
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Figure 1: Growth of the magnitude of the largest and smallest eigenvalues of D
(2)
in (left) and D̂

(2)
in (right)

at the PL points (c 6=0) against the Legendre case at the LGL points (c=0).
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Figure 2: Distribution of the largest and smallest eigenvalues of BinD
(2)
in (left) and BinD̂

(2)
in (right) for

various N∈ [4,218] and c=N/2.

various N with c=N/2 are confined in [λmin,λmax], which are concentrated around one
for slightly large N. This agrees with (3.35).

With the new basis {Bj} at our disposal, we can directly use it as a basis for prolate-
collocation solutions of PDEs and can also precondition the usual prolate-collocation
schemes (see [96]), which we will outline in Section 5.
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3.6 Kong-Rokhlin’s prolate-spectral differentiation schemes

In Kong and Rokhlin [47], highly accurate numerical differentiation schemes via PSWFs
were introduced to approximate bandlimited functions, and the involved differentiation
matrices have spectral radii that grow asymptotically O(M) and O(M2), for first and
second derivatives, respectively, where M is the dimension of the matrix. To this end, we
have a brief review of the method therein.

Let {ζ j,̟j}M
j=1 be a set of quadrature nodes and weights of a rule that integrates ex-

actly all pairwise products of ψ0,··· ,ψN−1∈Vc
N−1, that is,

∫ 1

−1
ψk(x)ψl(x)dx=

M

∑
j=1

ψk(ζ j)ψl(ζ j)̟j, ∀ψk,ψl ∈Vc
N−1, (3.50)

which can be found in [101]. Equivalently, by the orthogonality of PSWFs, we have from
(3.50) that

Ψ̃
t
Ψ̃= IN , where Ψ̃=

(
ajk :=

√
̟j ψk−1(xj)

)1≤k≤N

1≤j≤M
. (3.51)

For any uN ∈Vc
N−1, we write

uN(x)=
N−1

∑
n=0

βn ψn(x) and uN(ζ j)=
N−1

∑
n=0

βn ψn(ζ j), 1≤ j≤M. (3.52)

Therefore, we have the matrix form

Wu= Ψ̃β, (3.53)

where

W =diag(̟1,··· ,̟M), u=(uN(ζ1),··· ,uN(ζM))t, β=(β0,··· ,βN−1)
t. (3.54)

Thus, using (3.51), we compute the expansion coefficients from (3.53) by

β= Ψ̃
t
Wu. (3.55)

As pointed out [47], we choose M> N to guarantee the accuracy of the quadrature rule
(3.50). However, in the Legendre case, we can take M=N.

Then the prolate-spectral differentiation scheme is given by

u
(k)
N (ζ j)=

N−1

∑
n=0

βn ψ
(k)
n (ζ j), 1≤ j≤M, k≥1, (3.56)

with the matrix notation:

u(k)=Ψ
(k)

Ψ̃
t
Wu, k≥1, where Ψ

(k)=
(
ψ
(k)
i−1(xj)

)1≤i≤N

1≤j≤M
, (3.57)
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and u(k) is a column-M vector of the kth-order derivative values as defined in (3.54). Note
that Ψ

(0)=W−1
Ψ̃. The kth-order differentiation matrix is defined by

D̃
(k)

:=Ψ
(k)

Ψ̃
t
W , k≥1. (3.58)

In practice, we need to construct differentiation matrices that incorporate boundary
conditions, e.g., u(±1)=0 for second-order boundary value problems. Kong and Rokhlin
[47] suggested a new modal basis

φj(x)=ψj(x)−µj(x), where µj(x)=ψj(−1)
1−x

2
+ψj(1)

1+x

2
, (3.59)

which apparently satisfies φj(±1)=0, for all j≥0. To have the property (3.51), we first ap-
ply the algorithm in [101] to construct a quadrature rule similar to (3.50), and the pivoted
Gram-Schmidt re-orthogonalization process. It was also shown that the new differenti-
ation scheme together with the Kong-Rokhlin’s rule for pairing up (c,N) outperformed
the polynomial methods in the sense: (i) significantly better approximation to the con-
tinuous spectrum of the eigenproblem; and (ii) better conditioning of the differentiation
matrix, e.g., with a growth O(M2) for k=2.

3.7 Novel differentiation schemes based on generalised PSWFs

In what follows, we introduce a new spectral-differentiation scheme using a modal basis
obtained from the generalised PSWFs [94]. The significant features reside in that

• The new basis naturally incorporates the boundary conditions, and can be directly
computed from the generalised PSWFs in [94];

• The conditioning of the prolate differentiation matrix, e.g., the second-order, grows
like c2;

• It enjoys spectral accuracy on quasi-uniform grids.

Below, we just consider the method for second-order equations, and refer to the readers
to [106] for the details.

We are essentially motivated by the well-conditioned Legendre-spectral-Galerkin meth-
ods using integrated Legendre polynomials as basis functions [76] for second-order BVPs,
which are later systematically extended to generalized Jacobi polynomials/functions for
general BVPs in [31, 32]. Recall the following important property (see, e.g., [77]):

ϕk(x) :=
∫ x

−1
Pk−1(y)dy=

1

2k−1

(
Pk(x)−Pk−2(x)

)

=
1

2(k−1)
(x2−1)P

(1,1)
k−2 (x)=

2

k−1
P
(−1,−1)
k (x), k≥2,

(3.60)

where we refer to [87] for the Jacobi polynomials P
(α,β)
k (x) with parameters α or β≤−1.

We highlight some attractive properties of the new basis {ϕk}k≥2 :
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(i) We have ψk(±1)=0 for all k≥1, and the orthogonality:

∫ 1

−1
ϕ′

k(x)ϕ′
j(x)dx=

∫ 1

−1
ϕk(x)ϕj(x)(1−x2)−1dx=0, k 6= j, k, j≥2. (3.61)

Notably, under this basis, the matrix resulted from the leading term u′′ of the Galerkin
formulation is diagonal, so the resulted system is well-conditioned. Actually, it
forms an optimal basis in H1

0(−1,1).

(ii) If we define

ϕ0(x)=1, ϕ1(x)=
∫ x

−1
P0(y)dy=1+x, (3.62)

then {ϕk}k≥0 forms an H1-basis.

(iii) Using the notion of generalized Jacobi polynomials leads to much concise and pre-
cise analysis and estimates of the spectral approximations (see [77, Ch. 6]).

Wang and Zhang [94] generalized the PSWFs of order zero to an orthogonal system
with respect to the Gegenbauer weight function ωα(x)= (1−x2)α with α>−1. The gen-
eralized PSWFs are eigenfunctions of the singular Sturm-Liouville problem:

−(1−x2)−α∂x

(
(1−x2)α+1∂xψ

(α)
n (x;c)

)
+c2x2ψ

(α)
n (x;c)=χ

(α)
n (c)ψ

(α)
n (x;c), (3.63)

for c>0,α>−1 and n≥0. They are mutually orthogonal

∫ 1

−1
ψ
(α)
m (x;c)ψ

(α)
n (x;c)ωα(x)dx=δmn, (3.64)

and form a complete system in L2
ωα
(−1,1). When c=0, they reduce to Gegenbauer poly-

nomials. Notably, they are also eigenfunctions of the integral operator:

inλ
(α)
n ψ

(α)
n (x;c)=

∫ 1

−1
ψ
(α)
n (t;c)eictxωα(t)dt, ∀x∈ (−1,1). (3.65)

We refer to [94] for many other properties.
Inspired by (3.60), we introduce

qn(x)=(1−x2)ψ
(1)
n−2(x;c), n≥2, (3.66)

which obviously meets qn(±1)=0. It follows from (3.64) the orthogonality:

∫ 1

−1
qn(x)qm(x)(1−x2)−1dx=δmn. (3.67)

We derive from (3.63) with α=1 the following important property:

−q′′n(x)−c2qn(x)=σn (1−x2)−1qn(x)=σn ψ
(1)
n−2(x;c), n≥2, (3.68)
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where

σn :=σn(c)=χ
(1)
n−2(c)−c2+2. (3.69)

Like (3.62), we define

q0(x)=coscx, q1(x)=sincx, (3.70)

which turn to be the eigenfunctions of (3.68) corresponding to the eigenvalues σ0=σ1=0.
With this, one can expand general functions.

Denote

Yc
N :=span

{
qn : 0≤n≤N

}
, Yc,0

N :=span
{

qn : 2≤n≤N
}

. (3.71)

We now formulate the differentiation scheme for functions in Yc
N . For any vN ∈Yc

N, we
write

vN(x)= v̂0 q0(x)+ v̂1 q1(x)+
N

∑
n=2

v̂n qn(x). (3.72)

Let {xj}N
j=0 (with x0=−xN =−1) be the PL points as before. Like computing the cardinal

basis in (3.29), we can find {v̂n} by

v̂=Q−1v, Q=(qn(xj))0≤j,n≤N, (3.73)

where v̂ and v are column-N+1 vectors of {v̂n} and {vN(xj)}, respectively.

It is clear that v̂0 and v̂N can be computed directly by taking x=±1, so we have

v∗N(x) := v̂0 q0(x)+ v̂1 q1(x)=
vN(1)−vN(−1)

2

coscx

cosc
+

vN(1)+vN(−1)

2

sincx

sinc
, (3.74)

and

(vN−v∗N)(x)=
N

∑
n=2

v̂n qn(x)∈Yc,0
N . (3.75)

Thus, by (3.66) and (3.67),

v̂n =
∫ 1

−1
(vN−v∗N)(x)qn(x)(1−x2)−1dx=

∫ 1

−1
(vN−v∗N)(x)ψ

(1)
n−2(x)dx, (3.76)

which requires an accurate numerical quadrature.

We extend (3.68) to n= 0,1 with the understanding of σ0 = σ1 = 0 and ψ
(1)
−2 =ψ

(1)
−1 = 0.

Then we have the matrix equation:

−Q(2)−c2Q= Ψ̂Σ, (3.77)

where

Q(k)=(q
(k)
n (xj))0≤j,n≤N, Ψ̂=

(
ψ
(1)
n−2(xj)

)
0≤j,n≤N

, Σ=diag(σ0,··· ,σN). (3.78)
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Then the differentiation scheme based on (3.72) reads

v(k)=Q(k)v̂=Q(k)Q−1v=: D̃
(k)

v, k≥1. (3.79)

In particular, for k=2, we can simplify it to

D̃
(2)

=−c2 IN+1−Ψ̂ΣQ−1. (3.80)

Note that it does not involves the derivative values of generalised PSWFs.
We next look at this from the perspective of prolate-Galerkin formulation. This in-

volves the stiffness and mass matrices under the new basis of Yc,0
N , that is, S=(sjn)2≤j,n≤N

and M=(mjn)2≤j,n≤N, with

sjn :=
∫ 1

−1
q′n(x)q′j(x)dx, mjn :=

∫ 1

−1
qn(x)qj(x)dx. (3.81)

It follows from (3.68) that

S= c2M+Σ̃, where Σ̃=diag(σ2,··· ,σN). (3.82)

This attractive property is essential for efficient prolate-spectral algorithms for second-
order BVPs (cf. Section 5).

4 Spectral approximation results

In this section, we review the results on error estimates of spectral approximation of
bandlimited functions and general functions in Sobolev spaces by PSWF expansions.

Let us start with introducing some notation. Let Λ=(−1,1), and ω(x)>0 be a generic
weight function on Λ. Denote by L2

ω(Λ) the square integrable functions with the norm ‖·
‖ω. Further, let Hs

ω(Λ) with integer s be the usual Sobolev space with the norm ‖·‖s,ω and
semi-norm |·|s,ω . Whenever ω≡1, we drop the weight function from the above notation.

For any u∈L2(Λ), we write

u(x)=
∞

∑
n=0

ûnψn(x;c) where ûn := ûn(c)=
∫ 1

−1
u(x)ψn(x;c)dx. (4.1)

We consider the approximation of u by its L2-projection πc
Nu∈Vc

N (defined in (3.18)):

∫ 1

−1
(u−πc

Nu)(x)v(x)dx=0, ∀v∈Vc
N . (4.2)

It is clear that we have

(πc
Nu)(x)=

N

∑
n=0

ûnψn(x;c). (4.3)
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As a Riesz basis in L2(Λ), we have that for any c>0,

‖πc
Nu−u‖→0 as N→∞. (4.4)

An important issue is to understand for what range of c, the PSWF expansion enjoys spectral
accuracy on quasi-uniform grids.

4.1 c-bandlimited functions

We first consider the PSWF approximation of c-bandlimited functions, defined by

u(x)=
∫ 1

−1
eicxtφ(t)dt, for φ∈L2(Λ). (4.5)

It is straightforward to derive from the integral eigenproblem (2.13) the following esti-
mate (see, e.g., [92, Thm 3.1]).

Theorem 4.1. Let u be a c-bandlimited function given by (4.5). Then we have

‖πc
Nu−u‖≤λN+1‖φ‖, ∀c>0, (4.6)

where λN+1 is the eigenvalue in (2.13).

Note that λN(c) decays super-geometrically (cf. [92, (2.17)]):

λN(c)∼exp
(

Ñ(κ−logÑ)
)
, κ= log

ec

4
, Ñ=N+

1

2
≫1. (4.7)

Consequently, the PSWF with bandwidth parameter c provides an optimal approxima-
tion to the c-bandlimited functions.

4.2 Approximation results in Sobolev spaces

We now review the PSWF approximation of functions in general Sobolev spaces. The
following estimates can be founded in [13, Thm. 3.1].

Theorem 4.2. If

r
N

:=
c√
χN

<1, (4.8)

then for any u∈Hs(Λ) with integer s≥0, we have the bound for the expansion coefficient in (4.1):

|ûN(c)|≤C
(

N− 2
3 s‖u‖s+(rN )

δN‖u‖
)
, (4.9)

where C and δ are positive constants independent of u,N and c.
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Remark 4.1. Boyd [7] stated a similar result with the condition

r
N

:=
c

c∗N
<1 where c∗N =

π

2

(
N+

1

2

)
, (4.10)

in place of (4.8).

It is apparent that for small fixed c > 0, the PSWFs should have an approximabil-
ity similar to the Legendre polynomials. However, we observe from (4.9) that |ûN |=
O(N−2/3s), while the optimal order is expected to be O(N−s). Wang and Zhang [95, Thm.
2.2] improved the above estimates in the following sense.

Theorem 4.3. Let c>0, and qN = c/
√

χN . Given a positive constant q∗<1, if

qN ≤
q∗
6
√

2
≈0.8909q∗ , (4.11)

and
u∈Bs(Λ) :=

{
u : (1−x2)k/2∂k

xu∈L2(Λ), 0≤ k≤ s
}

(4.12)

with integer s≥0, we have the estimate

|ûN(c)|≤D
(

N−s‖(1−x2)s/2∂s
xu‖+(q∗)δN‖u‖

)
, (4.13)

where D and δ are positive constants independent of u,N and c.

As the second term in the upper bound of (4.13) is exponentially small for fixed c>
0, we have optimal convergence rate O(N−s). In (4.11), the feasible range of c is given
explicitly in terms of χN(c), but it is more informative to understand c in terms of N. It is
clear that from (2.31), we have

c√
N(N+1)+c2

<qN <
c

N
, (4.14)

so we infer from (4.11) that

c< c∗(N) :=
N
6
√

2
≈0.8909N. (4.15)

Consequently, the PSWF approximation has a guaranteed spectral accuracy when one
chooses c∈ (0,c∗(N)). We refer to [95] for numerical justifications.

Using Theorem 4.3, one can obtain the following estimate of the L2-projection error
(see [96, Appendix B]).

Theorem 4.4. Under the same conditions as in Theorem 4.3, we

‖πc
Nu−u‖≤D

(
N1/2−s

∥∥(1−x2)s/2∂s
xu

∥∥+ 1√
δln(1/q∗)

(q∗)δN‖u‖
)

, (4.16)

where D and δ are positive constants independent of u,N and c.
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Remark 4.2. Wang [92] considered PSWF approximation in Sobolev spaces characterised
by the Sturm-Liouville operator (2.19), where the bandwidth parameter was implicitly
built in the norms. The analysis techniques in [13, 95] can be applied to the analysis of
approximation by Mathieu functions for PDEs in elliptical geometry [80, 95].

5 Prolate spectral/spectral-element methods

In this section, we elaborate on the spectral and spectral-element methods using PSWFs
as basis functions, and demonstrate the advantages over the polynomial-based methods
when the underlying solutions are almost bandlimited and highly oscillatory.

5.1 Prolate-pseudospectral/collocation methods for hyperbolic PDEs

As already mentioned, an important motivation of using PSWFs as basis functions is to
relax the CFL restriction of the time-stepping size of an explicit marching scheme e.g.,
the Runge-Kutta method. Indeed, the PSWFs oscillate nearly uniformly which lead to
quasi-uniform grids, better conditioned pseudospectral differentiation matrices and bet-
ter spatial resolution.

Chen et al. [13] considered the prolate-pseudospectral method for the one-way wave
equation:

ut−ux =0, x∈ (−1,1); u(1,t)= g(t), u(x,0)= f (x). (5.1)

Let {xj}N
j=0 (arranged in ascending order) be the PL points and {hj} be the associated

cardinal basis defined in (3.26). We seek the PSWF approximation of u in space:

uN(x,t)=
N

∑
j=0

uN(xj,t)hj(x), (5.2)

and find u(t)=(uN(x0,t),··· ,uN(xN ,t))t via the penalty Galerkin method:

M
du

dt
=Su−τ(uN(1,t)−g(t))eN , t>0; u(0)= f , (5.3)

where τ > 0 is a penalty constant, eN is the unit vector with the last entry being 1, f =
( f (x0),··· , f (xN))

t, and the matrices M and S are

mij=
∫ 1

−1
hj(x)hi(x)dx, sij =

∫ 1

−1
h′j(x)hi(x)dx. (5.4)

It is shown in [13, Thm. 4.1] that the scheme (5.3) is stable if τ ≥ 1/2. In practice, over-
integration is needed to evaluate the integrals in (5.4), so that the induced numerical
errors are negligible. In [13], a 10th-order explicit Runge-Kutta method is adopted in
time discretisation of (5.3), and the numerical results show that (i) the PSWF method
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offers a systematic way of balancing accuracy and stability; and (ii) the choice of c=N/2
is suggested.

Note that one can use the prolate-collocation scheme to solve (5.1) with strong impo-
sition of the boundary condition, that is, to find uN(·,t)∈Vc

N for all t>0 such that

∂tuN(xi,t)−∂xuN(xi,t)=0, 0≤ i≤N−1;

uN(1,t)= g(t), uN(xi,0)= f (xi), 0≤ i≤N.
(5.5)

Like (5.2), we can write

uN(x,t)=
N−1

∑
j=0

uN(xj,t)hj(x)+g(t)hN(x). (5.6)

Inserting it into the scheme (5.5) leads to the system

dū

dt
= D̄ū+g(t)d, t>0; ū(0)= f̄ , (5.7)

where ū and f̄ are column-N vectors by removing the last entry from u and f in (5.3),
respectively, and

d=(h′N(x0),··· ,h′N(xN−1))
t, D̄=(h′j(xi))0≤i,j≤N−1. (5.8)

In fact, Kovvali et al. [50] discussed the solution of (5.1) by using the alternative cardi-
nal basis {lj} in (3.33), which allows for the prolate pseudospectral differentiation to be
carried out in a rapid manner by using the fast multipole method. Kong and Rokhlin [47]
applied a new differentiation scheme (see Subsection 3.6) to wave equations.

5.2 Prolate-pseudospectral/collocation methods for BVPs

To fix the idea, we consider the model equation:

L[u](x) :=u′′(x)+p(x)u′(x)+q(x)u(x)= f (x), x∈Λ; u(±1)=u±, (5.9)

where p,q, f are continuous functions in Λ, and u± are given constants.
Let Uc

N be a generic finite dimensional space spanned by PSWF or PSWF-related basis
functions, that is,

Uc
N :=span

{
β j : 0≤ j≤N

}
. (5.10)

Assume that
U0,c

N :=H1
0(Λ)∩Uc

N =span
{

β j : 1≤ j≤N−1
}

. (5.11)

Like a typical polynomial approximation, the collocation scheme for (5.9) is to find uN ∈
Uc

N such that

u′′
N(xj)+p(xj)u

′
N(xj)+q(xj)uN(xj)= f (xj), 1≤ j≤N−1; uN(±1)=u±. (5.12)
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We then consider the matrix form of the scheme under this generic basis:

uN(x)=u∗
N(x)+

N−1

∑
j=1

ũjβ j(x); u∗
N(x)= ũ0β0(x)+ũN βN(x), (5.13)

where ũ0,ũN are uniquely determined by u∗
N(±1)= u±. Inserting (5.13) into (5.12) leads

to the linear system

Aũ= f , where A=
(
L[β j](xi)

)
1≤i,j≤N−1

, (5.14)

and f =
(

f (x1)−L[u∗
N ](x1),··· , f (xN−1)−L[u∗

N ](xN−1)
)t

. In practice, we have different
choices of {β j} e.g., PSWF nodal basis and PSWF-related modal basis as reviewed previ-
ously and outlined below.

(i) Choose {β j} to be the PSWF cardinal basis: {hj} (cf. (3.26) or {lj} (cf. (3.33)). Ample
numerical evidences show that with a suitable choice of c, the conditioning of the
system (5.14) behaves like O(N3), as opposite to O(N4) in the Legendre case.

(ii) Choose {β j} to be {Bj} in (3.36)-(3.38). In this case, the matrix of the highest deriva-
tive is identity, and the system (5.14) is well-conditioned (see [96]). Thanks to (3.35),
one can also precondition the usual collocation scheme in (i) by the matrix Bin

generated from {Bj}, and the resulted preconditioned system is well-conditioned
(cf. [96]).

(iii) Choose {β j} to be {φj} in (3.59). As shown in [47], the condition number of the sys-
tem (5.14) is about O(N2), but some effort is needed to compute the basis functions.

(iv) Choose {β j} to be the generalised PSWFs {qj} in (3.66). Thanks to (3.80), the con-
ditioning of the system is O(c2).

One might also wish to employ the PSWF-pseudospectral method based on the Galerkin
formulation with numerical integration. We consider the BVP in the self-adjoint form:

−(a(x)u′(x))′+b(x)u(x)= g(x), x∈Λ; u(±1)=0, (5.15)

where 0< a0 < a(x)< a1. The PSWF-pseudospectral scheme for (5.15) is to find uN ∈U0,c
N

such that

〈au′
N ,v′N〉N+〈buN ,vN〉N = 〈g,vN〉N , ∀vN ∈U0,c

N , (5.16)

where 〈·,·〉N is the discrete inner product related to a prolate-quadrature as described in
Subsection 3.3. As commented in (3.18)-(3.19), it is hard to constructed a quadrature rule
as good as the polynomial counterpart. However, one can use the generalized PSWFs of
order −1 (cf. (3.66)) introduced in [106] as basis functions, and usual LGL quadrature
with over-integration for variable coefficient problems.
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Remark 5.1. Thanks to the relation between the mass and stiffness matrices in (3.82), we
see that if a=1 and b= c2 and under the Galerkin formulation with the continuous inner
product in place of the discrete inner product, the coefficient matrix becomes diagonal.
In other words, such a basis can diagonalise the Helmholtz operator: u′′+c2u in the spirit
of [79]. We refer to [106] for the details.

5.3 Prolate-collocation/Galerkin methods for eigenvalue problems

Consider the model eigen-problem:

Find (µ,u) such that u′′(x)=µu(x), x∈ (−1,1); u(±1)=0, (5.17)

which admits the eigen-pairs (µk,uk) :

µk =− k2π2

4
, uk(x)=sin

kπ(x+1)

2
, k≥1. (5.18)

The corresponding discrete eigen-problems are

Find (µ̃,ũ) such that D
(2)
in ũ= µ̃ũ; or Find (µ̂,û) such that D̂

(2)
in û= µ̂û, (5.19)

where D
(2)
in and D̂

(2)
in are defined in Subsection 3.4. We examine the relative errors:

ẽj :=
|µ̃j−µj|
|µj|

, êj :=
|µ̂j−µj|
|µj|

, 1≤ j≤N−1.

In the computation, (c,N) is paired up by the approximate Kong-Rokhlin’s rule with
ε=10−14. We plot in Figure 3 (quoted from [96]) the relative errors between the discrete
and continuous eigenvalues of the prolate differentiation matrices with c = 120π and
N = 284, compared with those of the Legendre differentiation matrix at the LGL points.

Among 283 eigenvalues of D
(2)
in , 245 (approximately 87%) are accurate to at least 12 digits

with respect to the exact eigenvalues, while only 72 (approximately 25%) of the Legendre
case are of this accuracy. A very similar number of accurate eigenvalues is also obtained

from D̂
(2)
in .

We next apply the prolate-Galerkin method using the generalized PSWFs in Subsec-
tion 3.7:

Find (µ̆,ŭ) such that Sŭ= µ̆Mŭ or Σ̃ŭ=(µ̆−c2)Mŭ, (5.20)

where the matrices are the same in (3.82). According to [98,108], there are about 2/π por-
tion of “trusted” eigenvalues for the polynomial spectral method in 1D, where “trusted”
means at least O(N−1) accuracy. In Table 1, we tabulate the percentages of “trusted”
discrete eigenvalues obtained by two methods for various (c,N). Observe again that the
generalized PSWF method leads to a significant higher portion of “trusted” eigenvalues.
Therefore, the generalized PSWFs have a better resolution of waves with fewer number
of points per wavelength than polynomials.
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Figure 3: The relative errors {ẽj}N−1
j=1 (left) and {êj}N−1

j=1 (right), obtained by c=120π,ε=10−14 and

N = 284. The prolate differentiation matrices D
(2)
in (left, marked by “△”) and D̂

(2)
in (right, marked by

“△”), against the Legendre case (marked by “◦”).

Table 1: Comparison of percentage of “trusted” eigenvalues.

N
Generalized PSWFs Legendre

c Percentage Percentage(≈2/π)
67 20π 52/67≈77.6% 42/67≈62.7%

101 35π 82/101≈81.1% 62/98≈63.3%
454 200π 417/454≈91.9% 289/454≈63.6%
668 300π 621/668≈93.0% 425/668≈63.6%
882 400π 825/882≈93.5% 561/882≈63.6%
987 450π 926/987≈93.8% 628/987≈63.6%
1093 500π 1028/1093≈94.0% 696/1093≈63.6%
1307 600π 1232/1307≈94.3% 832/1307≈63.6%

5.4 Prolate-element methods and nonconvergence of h-refinement

Through simply examining hp-prolate approximation of the trivial function u(x) ≡ 1,
Boyd et al. [10] demonstrated that in contrast to polynomials, such an approximation does
not converge when the partition is refined but p. A justification was provided in Wang et
al. [96]. To fix the idea, we consider the approximation of u(x) defined on Ω :=(a,b) with
a uniform partition:

Ω̄=
M⋃

i=1

Īi, Ii :=(ai−1,ai), ai = a+ih, h=
b−a

M
, 1≤ i≤M. (5.21)



132 L.-L. Wang / J. Math. Study, 50 (2017), pp. 101-143

Note that the mapping between Ii and the reference interval Λ :=(−1,1) is given by

x=
h

2
y+

ai−1+ai

2
=

hy+2a+(2i−1)h

2
, x∈ Ii, y∈Λ. (5.22)

For any u(x) defined in Ω, we denote

u|x∈Ii
=uIi(x)= ûIi(y), x=

hy+2a+(2i−1)h

2
∈ Ii, y∈Λ. (5.23)

We consider the hp-prolate approximation of u by

(
πc

h,Nu
)∣∣

Ii
(x)=

N

∑
n=0

ûIi
n (c)ψn(y;c) with ûIi

n (c)=
∫

Λ
ûIi(y)ψn(y;c)dy. (5.24)

To describe the errors, we introduce the broken Sobolev space:

H̃σ(a,b)=
{

u : uIi ∈Hσ(Ii), 1≤ i≤M
}

, σ≥1, (5.25)

equipped with the norm and semi-norm

‖u‖H̃σ(a,b)=
( M

∑
i=1

‖uIi‖2
Hσ(Ii)

) 1
2
, |u|H̃σ(a,b)=

( M

∑
i=1

∥∥∂σ
xuIi

∥∥2

L2(Ii)

) 1
2
.

Theorem 5.1. [96, Thm 4.1]. For any constant q∗<1, if

c√
χN

≤ q∗
6
√

2
≈0.8909q∗ , (5.26)

then for any u∈ H̃σ(a,b) with σ≥1, we have

‖πc
h,Nu−u‖L2(a,b)≤D

{√
N
( h

N

)σ
|u|H̃σ(a,b)+

1√
δln(1/q∗)

(q∗)
δN‖u‖L2(a,b)

}
, (5.27)

where D and δ are positive constants independent of u,N and c.

Observe from (5.27) that the second error term in the upper bound is independent of
h. This implies that for fixed N, the refinement of h does not lead to any convergence in
h, when the second term dominates the error. In view of this, it is advisable to use the
p-version prolate-element method. It is noteworthy that the prolate-element method can
be implemented as with the usual spectral-element method by swapping the basis and
quadrature rules, while the choice of c can follow the rule in Subsection 3.2.

To demonstrate the performance of p-version prolate-element method, we revisit the
Helmholtz equation in a heterogeneous medium considered in [96]:

(c2(x)u′(x))′+k2n2(x)u(x)=0, x∈Ω=(a,b);

u(a)=ua, (cu′−iknu)(b)=0,

u, c2u′ are continuous on Ω,

(5.28)
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where the wavenumber k>0. Here, we take Ω=(0,1), f (x)=1 and consider the problem
(5.28) with piecewise smooth coefficients:

c(x)=





1+x2, 0< x<0.25,

1−x2, 0.25< x<0.5,

1, 0.5< x<1,

n(x)=





1.75+x, 0< x<0.25,

1.25−x, 0.25< x<0.5,

2, 0.5< x<1.
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Figure 4: Real part (left) of the reference “exact” solution u computed by (c,N)=(177,144) and k=160,
against the numerical solution uN of the prolate-element method with (c,N)=(36,48). The maximum
point-wise error is 1.19×10−6. Right: Maximum point-wise errors of Legendre spectral-element and
prolate-element methods.

We partition Ω into four subintervals of equal length, and compute a reference “ex-
act” solution using very fine grids by the prolate-element method with (c,N)=(177,144)
(paired up by the Kong-Rokhlin’s rule). In Figure 4 (left) (cf. [96]), we plot the real part
of the “exact” solution with k=160 against the numerical solution obtained very coarse
grids with (c,N) = (36,48), which approximates the highly oscillatory solution with an
accuracy about 10−6. In Figure 4 (right) (cf. [96]), we make a comparison of the conver-
gence with the polynomial spectral elements. Here, we sample c ∈ [4,52], and observe
much faster convergence rate for the prolate approach.

We next review the prolate-element method for PDEs on the sphere [107]. The grid-
ding on the sphere is based on a projection of the prolate-points by using the cubed-
sphere transform, which is free of singularity and leads to quasi-uniform grids. As re-
sult, the proposed prolate-element method can relax the time step size constraint of an
explicit time-marching scheme, and increase the accuracy and enhance the resolution.
Note that the cubed-sphere transform was introduced to overcome the pole singularity
induced by the spherical transform (cf. [71, 72]). The basic idea is to partition the sphere
into six identical patches through a central projection of the faces of the inscribed cube
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onto the spherical surface so that each of the six local coordinates is free of singularity.
In Figure 5, we compare the distribution of the mapped LGL and prolate-points by the
cubed-sphere transform, which shows that the latter is more uniformly distributed. Con-
sider the conservative transport on the sphere governed by the continuity equation in
flux form (cf. [63]):

∂Φ

∂t
+div(ΦV)=0 on S×(0,T]; Φ|t=0=Φ0, (5.29)

where Φ is the advection field and V =(u,v)t is the given horizontal wind vector on the
unit sphere S.

Figure 5: The grid distribution on the sphere with 10×10 points on each patch. Left: LGL points.
Middle: prolate points with c=8. Right: Vortex near the north pole simulated by the prolate-element
method with a third-order Adams-Bashforth time marching scheme.

We test the deformation flow (cf. [63]) consisting of two opposite vortices located
at two poles as shown in Figure 5 (right). Indeed, we demonstrated in [107] that the
prolate-element method with cubed-sphere partition led to accurate simulations of vari-
ous nonlinear PDEs on the sphere.

6 Generalisations of prolate spheroidal wave functions

The extension and generalisation of Slepian’s time-frequency concentration problems
and/or Slepian’s functions in different senses have attracted much attention. Slepian [83]
extended the earlier works [52, 86] to multidimensional settings, and introduced a fam-
ily of generalized PSWFs from the finite Fourier transform on a unit disk. Beylkin et
al. [3] explored some interesting issues of bandlimited functions in a disk. Simons et
al. [81] gave an up-to-date review of time-frequency and time-scale concentration prob-
lems on a sphere. We also refer to the recent works [21, 109] along this line. SenGupta
et al. [75] considered the concentration problem over disjoint frequency intervals. An-
other very important inspiration of the Slepian’s seminal papers is the investigation of
differential operators that commute with appropriate integral operators, see for exam-
ple, the insightful analysis by Grünbaum et al. [28–30]. Zayed [103] showed by using
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the theory of reproducing-kernel Hilbert spaces that there are other systems possessing a
double orthogonality as the Slepian functions, and in turn the Slepian functions turn out
to be a lucky special case under this framework. The work [68] extended (2.13) to a finite
fractional Fourier transform with applications to simultaneously time and band concen-
trating signals in optical systems. Below, we review several extensions most relevant to
spectral methods.

6.1 Prolate spheroidal wave equation and generalised PSWFs

The eigenfunctions of the prolate spheroidal wave equation (PSWE)

{
− 1

cosθ

d

dθ

(
cosθ

d

dθ

)
+

m2

cos2θ
+c2sin2 θ

}
y=λ(m;c)y, θ∈ (−π/2,π/2), (6.1)

are known as the (angular) prolate spheroidal functions, which arise in diverse areas such
as the nuclear shell model, atomic and molecular physics, the study of light scattering in
optics and theoretical cosmological models involving spheroidal geometry [1, 23, 24, 56,
64]. Here, the integer m is the zonal wavenumber and c is the “bandwidth” parameter.
Using the transformation x=cosθ leads to the alternative form

d

dx

{
(1−x2)

dv

dx

}
−
{ m2

1−x2
+c2x2

}
v=−λv, x∈ (−1,1). (6.2)

It is noteworthy that Huang, Xiao and Boyd [39] proposed adaptive radial basis func-
tion and Hermite function pseudospectral methods for solving this eigen-problem for
very large bandwidth parameter. Alıcı and Shen [2] introduced efficient pseudospectral
methods for the PSWE with small and very large bandwidth parameters.

With a substitution, Wang and Zhang [94] defined the generalised PSWFs of order
α>−1. More precisely, letting v(x)=(1−x2)m/2u(x), yields

(1−x2)
d2u

dx2
−2(m+1)x

du

dx
+
(
χ−c2x2

)
u=0, c>0; χ=λ−m(m+1),

which can be written as the self-adjoint form:

(1−x2)−m d

dx

{
(1−x2)m+1 d

dx
u(x)

}
+
(
χ−c2x2

)
u(x)=0, c>0, x∈ (−1,1). (6.3)

Allowing m to be any real number >−1, we introduced the generalized PSWFs as the
eigenfunctions of the singular Sturm-Liouville problem:

−(1−x2)−α d

dx

{
(1−x2)α+1 d

dx
ψ
(α)
n (x;c)

}
+c2x2ψ

(α)
n (x;c)=χ

(α)
n (c)ψ

(α)
n (x;c), (6.4)

for c > 0,α >−1 and n ≥ 0. If α = 0, it reduces to the PSWFs of order zero. We refer to
(3.64)-(3.65) and [94] for many properties.
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Karoui and Souabni [45] further generalised the PSWFs of order α to an orthogonal
system with parameters α,β>−1, defined as the eigenfunctions of

−ω(−α,−β) d

dx

{
ω(α+1,β+1) d

dx
ψ
(α,β)
n

}
+c2x2ψ

(α,β)
n =χ

(α,β)
n ψ

(α,β)
n , (6.5)

where ω(a,b)(x)=(1−x)a(1+x)b as before. They reduce to the Jacobi polynomials when
c=0, and include the generalised PSWFs in [94] as special cases when α=β>−1.

Note that if α = β, the generalised PSWFs are both eigenfunctions of the compact
integral operators:

F (α)
c [φ](x)=

∫ 1

−1
eicxtφ(t)ωα(t)dt, ωα(t)=(1−t2)α;

Q(α)
c

[
φ
]
(x)=

1

2α
√

2πΓ(α+1)

(
F (α)

c

)∗◦ F (α)
c [φ](x)

=
∫ 1

−1

Jα+ 1
2
(c|t−x|)

(c|t−x|)α+ 1
2

φ(t)ωα(t)dt,

(6.6)

where Jα+ 1
2
(·) is the Bessel function of the first kind. However, for the un-symmetric

case α 6= β, these attractive properties and important analytic tools appear not available.
Using the notion of a restricted Paley-Wiener space, Karoui and Souabni [45] related

{ψ
(α,β)
n (x;c)} to the solution of a generalised energy maximisation problem.
Motivated by Guo, Shen and Wang [31, 32], Zhang et al. [106] introduced a family of

generalised PSWFs of order −1 for second-order BVPs (see Subsection 3.7 and Subsection

5.2). In fact, we can further define generalised PSWFs {ψ
(−k,−l)
n (x;c)} with integers k,l≥1,

by the reflecting property:

ψ
(−k,−l)
n (x;c)=(1−x)k(1+x)lψ

(k,l)
n−k−l(x;c); n≥ k+l, (6.7)

which can serve as basis functions for higher-order BVPs with homogeneous Dirichlet
boundary conditions.

Slepian [83] discussed the time-frequency concentration problem on a unit disk:

γψ(x,y)=
∫

D
eic(xξ+yη)ψ(ξ,η)dξdη, c>0,

where D={(x,y) : x2+y2≤1}. This induces a family of circular PSWFs as the eigenfunc-
tions of the integral operator:

µφ(r)=
∫ 1

0
Jα(crs)

√
crsφ(s)ds, 0≤ r≤1, (6.8)

which is actually related to the finite Hankel transform (cf. [44]). As shown in [105], such

a family is closely related to the Jacobi functions
{

xα+1/2P
(α,0)
n (1−2x2)

}
for x ∈ (−1,1)
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and α ≥−1/2. In [104], we non-trivially extend prolate spheroidal wave functions on
d-dimensional balls which are eigenfunctions of the finite Hankel transform, and also
generalise the orthogonal polynomials on the balls (see, e.g., [16, 55]).

6.2 Oblate spheroidal wave functions

A spheroid, or ellipsoid of revolution, is a quadric surface obtained by rotating an el-
lipse about one of its principal axes; in other words, an ellipsoid with two equal semi-
diameters. If the ellipse is rotated about its major axis, the result is a prolate (elongated)
spheroid, like an American football or rugby ball. If the ellipse is rotated about its minor
axis, the result is an oblate (flattened) spheroid, like a lentil.

The oblate spheroidal wave functions (OSWFs) are arisen from the separation of vari-
ables solving the Helmholtz problems in the oblate spheroidal geometry. With a change
of c → ic in (6.1)-(6.2), the eigenfunctions of the resulted eigen-problem are the corre-

sponding OSWFs or their generalisations, denoted by φn(x;c),φ
(α)
n (x;c) and φ

(α,β)
n (x;c).

In other words, we have φn(x;c) = ψn(x;ic). Thanks to this relation, we can transplant
the properties of the PSWFs to the OSWFs. For example, the OSWFs of order zero are
eigenfunctions of both operators

Lc
x[φ]=

{ d

dx
(1−x2)

d

dx
+c2x2

}
φ; I c

x[φ]=
∫ 1

−1
ecxtφ(t)dt. (6.9)

Indeed, they are commutable (cf. [103, Ex.5.2]). It is important to point out that in contrast
with the PSWFs, the OSWFs become more oscillatory near the endpoints x =±1, as c
increases, which should be more suitable to be the basis functions for problems with
boundary layers.

In [61], the generalised OSWFs were introduced as the eigenfunctions of the Sturm-
Liouville problem:

−ω(−α,−β) d

dx

{
ω(α+1,β+1) d

dx
φ
(α,β)
n

}
−
{

c2x2+cx(β−α)
}

φ
(α,β)
n =χ

(α,β)
n φ

(α,β)
n , (6.10)

for α,β>−1 and c>0. With the linear term “cx(β−α)”, this new family is also eigenfunc-
tions of the integral operators:

I (α,β)
c,x [φ]=

∫ 1

−1
ec(xt−1)φ(t)ω(α,β)(t)dt, (6.11)

Q(α,β)
c,x [φ]=

(
I (α,β)

c,x

)∗◦I (α,β)
c,x [φ]=

∫ 1

−1
Kα,β(x,t)φ(t)ω(α,β)(t)dt, (6.12)

where

Kα,β(x,t)= e−2c
∫ 1

−1
ec(x+t)zω(α,β)(z)dz
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can be expressed in terms of the Whittaker function. It is evident that one can define a
new system of generalised PSWFs by changing c→ic in (6.10), so the analytic tools related
to (6.11)-(6.12) are available for the case α 6= β. If α= β, the operators in (6.11)-(6.12) with
c→ ic certainly reduce to the operators in (6.6).

7 Concluding remarks

Over the past fifteen years, there has been much renewed interest in the prolate spheroidal
wave functions and related problems. It is not possible to provide a very comprehensive
review of the developments in many subjects. It also appears ambitious to highlight
and summarise the results on numerical analysis and computations using PSWFs and
their variants. We therefore strive to focus on their applications in spectral and spectral-
element methods for problems with oscillatory and almost bandlimited solutions. We
emphasise the care needed to construct efficient spectral algorithms in comparison with
polynomial-based approaches.
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