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Abstract. Motivated by the Bohr atomic model, in this article we establish a mathe-
matical theory to study energy levels, corresponding to bounds states, for subatomic
particles. We show that the energy levels of each subatomic particle are finite and
discrete, and corresponds to negative eigenvalues of the related eigenvalue problem.
Consequently there are both upper and lower bounds of the energy levels for all sub-
atomic particles. In particular, the energy level theory implies that the frequencies of
mediators such as photons and gluons are also discrete and finite. Both the total num-
ber N of energy levels and the average energy level gradient (for two adjacent energy
levels) are rigorously estimated in terms of certain physical parameters. These esti-
mates show that the energy level gradient is extremely small, consistent with the fact
that it is hard to notice the discrete behavior of the frequency of subatomic particles.
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1 Introduction

This article is part of a research program initiated in the last few years by the authors
to derived experimentally verifiable laws of Nature based only on a few fundamental
first principles, guided by experimental and observation evidences. The new theory we
have established gives rise to solutions and explanations to a number of longstanding
mysteries in modern theoretical physics. This work is synthesized in a recent by by the
authors [8].

Basically, we have discovered three fundamental principles: the principle of inter-
action dynamics (PID) [5], the principle of representation invariance (PRI) [6], and the
principle of symmetry-breaking (PSB) for unification [8].
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PID takes the variation of the action under the energy-momentum conservation con-
straints, and is required by the dark matter and dark energy phenomena for gravity),
by the quark confinements (for strong interaction), and by the Higgs field (for the weak
interaction).

PRI requires that the gauge theory be independent of the choices of the representation
generators. These representation generators play the same role as coordinates, and in
this sense, PRI is a coordinate-free invariance/covariance, reminiscent of the Einstein
principle of general relativity. In other words, PRI is purely a logic requirement for the
gauge theory.

PSB offers an entirely different route of unification from the Einstein unification route
which uses large symmetry group. The three sets of symmetries — the general relativistic
invariance, the Lorentz and gauge invariances, as well as the Galileo invariance — are
mutually independent and dictate in part the physical laws in different levels of Nature.
For a system coupling different levels of physical laws, part of these symmetries must be
broken.

This article is motivated 1) by the classical atomic energy level theory, 2) the weakton
model of elementary particles [7], and 3) the new field theory for the four fundamental
interactions [5, 6].

The classical atomic energy level theory demonstrates that there are finite number of
energy levels for an atom given by En = E0+λn, n= 1,··· ,N, where λn are the negative
eigenvalues of the Schrödinger operator, representing the bound energies of the atom,
holding the orbital electrons, due to the electromagnetism.

The weakton model of elementary particles and the unified field theory are devel-
oped recently by the authors [5–7]. The field theory is based on two recently postulated
principles by the authors: the principle of interaction dynamics (PID) and the principle
of representation invariance (PRI). Intuitively, PID takes the variation of the action un-
der energy-momentum conservation constraint. PID offers a completely different and
natural way of introducing Higgs fields, and is also required by the quark confinement.
For gravity, we show that PID is the direct consequence of Einsteins principle of gen-
eral relativity and the presence of dark matter and dark energy. PRI requires that the
SU(N) gauge theory be independent of representations of SU(N). PRI has remarkably
rich physical consequences.

The main objectives of this article are 1) to introduce the energy levels for all sub-
atomic particles, 2) to develop a mathematical theory to study energy levels, and 3) to
derive physical implications and predictions of the theory.

Hereafter we explore the key ingredients and the main results in this article.

FIRST, we develop a mathematical theory for estimating the number of negative eigen-
values for a class of differential operators, and consequently the theory is applied to study
the energy levels for subatomic particles.

SECOND, the constituents of subatomic particles are spin-1
2 fermions, which are bound
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together by either weak or strong interactions. Hence the starting point of the study is
the layered weak and strong potentials derived recently by the authors [6], which play
the similar role as the Coulomb potential for the electromagnetic force which bounds the
orbital electrons moving around the nucleons.

THIRD, dynamic equations of massless particles are the Weyl equations, and the dy-
namic equations for massive particles are the Dirac equations. The bound energies of all
subatomic particles are the negative eigenvalues of the corresponding Dirac and Weyl
operators, and the bound states are the corresponding eigenfunctions.

The Weyl equations were introduced by H. Weyl in 1929 to describe massless spin-1
2

free particles [11], which is now considered as the basic dynamic equations of neutrinos
[3, 4, 9]; see also [2]. For a bound state of a massless particle under either weak or strong
interaction potentials, we derive then a new set of dynamic equations (3.11) based on
quantum mechanics principles, which are still called the Weyl equations; see Section 3
for the detailed derivation.

FOURTH, with bound state equations for both massless and massive particles, we
derive the corresponding spectral equations for the bound states. With the mathematical
theory developed in this article on the related eigenvalue problems, we show that the
energy levels of each subatomic particle are finite and discrete:

0<E1< ···<EN <∞,

and each energy level En corresponds to a negative eigenvalue λn of the related eigen-
value problem. Physically, λn represents the bound energy of the particle, and are related
to the energy level En with the following relation:

En =E0+λn, λn <0 for 1≤n≤N. (1.1)

Here E0 is the intrinsic potential energy of the constituents of a subatomic particle such
as the weaktons.

FIFTH, one important consequence of the above derived energy level theory is that
there are both upper and lower bounds of the energy levels for all sub-atomic particles,
and the largest and smallest energy levels are given by

0<Emin =E0+λ1<Emax=E0+λN <∞. (1.2)

In particular, it follows from the energy level theory that the frequencies of mediators
such as photons and gluons are also discrete and finite, and are given by ωn = En/h̄
(n = 1,··· ,N). In the Planck classical quantum assumption that the energy is discrete
for a fixed frequency, and the frequency is continuous. Our results are different in two
aspects. One is that the energy levels have an upper bound. Two is that the frequencies
are also discrete and finite. Hence the derived results in this article will have significant
implications for field quantizations.
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SIXTH, based on the mathematical theory developed in this article, we have rigor-
ously derived estimates on the total number N of energy levels for subatomic particles,
which can be summarized as follows:

N=





(
4

λ1

ρ2
0 Aw

ρw

mwc

h̄

g2
w

h̄c

)3/2

for charged leptons and quarks,

(
4

λ1

ρ2
1 As

ρq

mqc

h̄

g2
s

h̄c

)3/2

for baryons,

(
Aw

β1

ργ

ρw

g2
w

h̄c

)3

for photons.

Here gw and gs are the weak and strong charges, mw is the mass of the constituent weak-
ton, mq is the mass of the constituent quark, ρw and ρq are the radii of the constituent
weakton and quark respectively, ρ0,ρ1,ργ are the radii of the weak attraction, the strong
attraction and the photon respectively, and Aw, As are nondimensional constants.

SEVENTH, by estimating the average energy level gradient (for two adjacent energy
levels), we are able to show that

△E∼10−58eV,

which is too small to be practically measurable. This is consistent with the fact that it is
hard to notice the discrete behavior of the frequency of subatomic particles.

EIGHTH, it is now classical that the electromagnetic, weak and strong interactions are
described by gauge fields. Consequently, they all enjoy a common property that moving
charges generate magnetism. Namely, in the same spirit as the electric charge e producing
magnetism, the weak and strong charges gw,gs can also produce similar effects, which we
also call magnetism.

For a massless particle, the term

g~σ ·curl~A

in the Weyl equations reflects the magnetic force generated by the weak or strong inter-

action, where~σ=(σ1,σ2,σ3) is the Pauli matrix operator, and ~A is the special component

of the combined weak or strong potential Aµ=(A0, ~A) using PRI first introduced in [6].
For a massive particle, magnetic effect is reflected by the term

~µk ·curl~A

in the Dirac equations, where ~µk = h̄g~σ/2mk represents magnetic moment, generated by
either weak or strong interaction.

NINTH, we are able to establish a relationship between the spectrum and the bound
state of subatomic particles in terms of related physical parameters. For example, for an
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electron, the eigenvalue λe and and the certain quantities of the corresponding bound
state ψe enjoy the following relation:

λe =
1

2
mwv2+

2g2
w

re
− 2Awg2

w

ρw
κe,

where 1
2 mwv2 is the kinetic energy of each constituent weakton in the electron, re is the

radius of the electron, and κe is a new parameter for the electron; see (5.10).

This article is divided into two parts. The first part consists of Sections 2 and 3, and
deals with the mathematical theory for eigenvalue problems originated from the Dirac
and Weyl equations for bound states of subatomic particles. Section 2 studies spectrum
of general elliptic differential operators, and Section 3 addresses the spectrum of the Weyl
operators.

Part 2 consists of Sections 4 and 5, and studies the energy levels and spectrum of
the Dirac and Weyl equations applied to subatomic particles. Section 4 focuses on the
spectral problems, and Section 5 studies energy levels of subatomic particles.

The early version of this paper appeared as an Issac Newton Institute Preprint #
NI14002.

Part I

Mathematics

2 Spectrum of Elliptic operators

2.1 Physical background

Based on the Bohr atomic model, an atom consists of a proton and its orbital electron,
bounded by electromagnetic energy. Due to the quantum effect, the orbital electron is in
proper discrete energy levels:

0<E1< ···<EN , (2.1)

which can be expressed as
En=E0+λn (λn <0), (2.2)

where λn (1≤n≤N) are the negative eigenvalues of a symmetric elliptic operator. Here
E0 stands for the intrinsic energy, and λn stands for the bound energy of the atom, holding
the orbital electrons, due to the electromagnetism. Hence there are only N energy levels
En for the atom, which are certainly discrete.

To see this, let Z be the atomic number of an atom. Then the potential energy for
electrons is given by

V(r)=−Ze2

r
.
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With this potential, the wave function ψ of an orbital electron satisfies the Schrödinger
equation

ih̄
∂ψ

∂t
+

h̄2

2m0
∇2ψ+

Ze2

r
ψ=0. (2.3)

Let ψ take the form

ψ= e−iλt/h̄ ϕ(x),

where λ is the bound energy. Putting ψ into (2.3) leads to

− h̄2

2m0
∇2 ϕ− Ze2

r
ϕ=λϕ.

Since the orbital electrons are bound in the interior of the atom, the following condition
holds true:

ϕ=0 for |x|> r0,

where r0 is the radius of an atom. Thus, if ignoring the electromagnetic interactions
between orbital electrons, then the bound energy of an electron is a negative eigenvalue
of the following elliptic boundary problem

− h̄2

2m0
∇2ϕ− Ze2

r
ϕ=λϕ for x∈Br0 ,

ϕ=0 for x∈∂Br0 ,

(2.4)

where Br0 is a ball with the atom radius r0.

According to the spectral theory for elliptic operators, the number of negative eigen-
values of (2.4) is finite. Hence, it is natural that the energy levels in (2.2) are finite and
discrete.

In fact, we shall demonstrate in this article that all subatomic particles possess discrete
and finite energy levels as electrons. The study is based on a unified field model for
interactions of Nature [5, 6] and an elementary particle theory, called the weakton model
in [6,7], both developed recently by the authors. Based on these two models, two or three
of weaktons and quarks are bound together to form a subatomic particle under the weak
and strong interactions. Thus, naturally these particles have a sequence of energy levels,
which are described by the negative eigenvalues of some linear differential operators.

2.2 Mathematical preliminaries

Consider the eigenvalue problem of linear elliptic operators given by

−D2ψ+Aψ=λψ for x∈Ω,

ψ=0 for x∈∂Ω,
(2.5)
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where Ω ⊂ Rn is a bounded domain, ψ = (ψ1,··· ,ψm)T : Ω → Cm is the unkwon wave
function,

D=∇+i~B, ~B=(B1,··· ,Bn), (2.6)

and A,Bk (1≤ k≤n) are m×m Hermitian matrix-valued functions.

Let λ0 be an eigenvalue of (2.5). The corresponding eigenspace:

Eλ0
=
{

ψ∈L2(Ω,Cm) | ψ satisfy (2.5) with λ=λ0

}

is finite dimensional, and its dimension

σ=dim Eλ0

is called the multiplicity of λ0. Physically, σ is also called degeneracy. Usually, we count
the multiplicity σ of λ0 as σ eigenvalues:

λ1= ···=λσ =λ.

The following spectral theorem is classical.

Theorem 2.1. Assume that the functions in the matrices A and Bj (1≤ j≤ n) are square inte-
grable. Then the following assertions hold true:

1. All eigenvalues of (2.5) are real with finite multiplicities, and form an infinite consequence
as follows:

−∞<λ1≤λ2≤···≤λn ≤··· , λn →∞ as n→∞,

where λn is counting the multiplicity.

2. The eigenfunctions ψn corresponding to λn are orthogonal to each other:

∫

Ω
ψ†

nψldx=0 ∀n 6= l.

In particular, {ψn} form an orthogonal basis of L2(Ω,Cm).

3. There are only finite number of negative eigenvalues in {λn},

−∞<λ1≤···≤λN <0, (2.7)

and the number N of negative eigenvalues depends on A,Bj (1≤ j≤n) and the domain Ω.

Remark 2.1. For the energy levels of particles, we are mainly interested in the negative
eigenvalues of (2.5) and the estimates for the number N in (2.7).
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2.3 Conditions for existence of negative eigenvalues

The following theorem provides a necessary and sufficient condition for the existence of
negative eigenvalues of (2.5), and a criterion to estimate the number of negative eigen-
values.

Theorem 2.2. For the eigenvalue problem (2.5), the following assertions hold true:

1. Equations (2.5) have negative eigenvalues if and only if there is a function ψ∈H1
0(Ω,Cm),

such that ∫

Ω
[(Dψ)†(Dψ)+ψ† Aψ]dx<0, (2.8)

where D is as in (2.6).

2. If there are K linear independent functions ψ1,··· ,ψK ∈H1
0(Ω,Cm), such that

ψ satisfies (2.8) for any ψ∈EK =span {ψ1,··· ,ψK}, (2.9)

then the number N of negative eigenvalues is larger than K, i.e., N≥K.

Proof. Assertion (1) follows directly from the following classical formula for the first
eigenvalue λ1 of (2.5):

λ1= min
ψ∈H1

0(Ω,Cm)

1

||ψ||L2

∫

Ω

[
(Dψ)†(Dψ)+ψ† Aψ

]
dx. (2.10)

We now prove Assertion (2) by contradiction. Assume that it is not true, then K>N.
By Theorem 2.1, the K functions ψj in (2.9) can be expended as

ψj=
N

∑
i=1

αjiei+
∞

∑
l=1

β jl ϕl for 1≤ j≤K, (2.11)

where ei (1≤i≤N) and ϕl are eigenfunctions corresponding to negative and nonnegative
eigenvalues. Since K>N, there exists a K-th order matrix P such that

Pα=

(
0 ··· 0

∗

)
, (2.12)

where

α=




α11 ··· α1N
...

...
αK1 ··· αKN


 with αij as in (2.11).

Thus, under the transformation P,

ψ̃=P

(
ψ

0

)
∈EK, ψ=(ψ1,··· ,ψN)

T, (2.13)
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where EK is as in (2.9).
However, by (2.11) and (2.12), the first term ψ̃1 in (2.13) can be expressed in the form

ψ̃1=
∞

∑
l=1

θl ϕl ∈EK. (2.14)

Note that ϕl are the eigenfunctions corresponding to the nonnegative eigenvalues of (2.5).
Hence we have ∫

∞
[(Dψ̃1)

†(Dψ̃1)+ψ̃†
1 Aψ̃1]dx=

∫

Ω
ψ̃†

1(−D2ψ̃1+Aψ̃1)dx (2.15)

=
∞

∑
l=1

|θl |2λl >0.

Here λl ≥ 0 are the nonnegative eigenvalues of (2.5). Hence we derive, from (2.14) and
(2.15), a contradiction with the assumption in Assertion (2). Thus, the proof of the theo-
rem is complete.

2.4 Estimates for the number of negative eigenvalues

For simplicity, it is physically sufficient for us to consider the eigenvalue problem of the
Laplace operators, given by

−∇2ψ+V(x)ψ=λψ for x∈Br,

ψ=0 for x∈∂Br,
(2.16)

where Br ⊂Rn is a ball with radius r.
In physics, V represents a potential function and takes negative value in a bound

state, ensuring by Theorem 2.2 that (2.16) possesses negative eigenvalues.
Here, for the potential function V(x), we assume that

V(ρx)≃ραV0(x) (α>−2), (2.17)

where V0(x) is defined in the unit ball B1, and

Ω={x∈B1 | V0(x)<0} 6=∅. (2.18)

Let θ>0 be defined by

θ= inf
ψ∈L2(Ω,Cm)

1

||ψ||L2

∫

Ω
|V(x)| |ψ|2dx. (2.19)

The main result in this section is the following theorem, which provides a relation
between N,θ and r, where N is the number of negative eigenvalues of (2.16). Let λ1 be
the first eigenvalue of the equation

−∆e=λe for x∈Ω,

e=0 for x∈∂Ω,
(2.20)

where Ω⊂B1 is as defined by (2.18).
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Theorem 2.3. Under the assumptions of (2.17) and (2.18), the number N of the negative eigen-
values of (2.16) satisfies the following approximative relation

N≃
(

θr2+α

λ1

)n/2

, (2.21)

provided that θr2+α/λ1≫1 is sufficiently large, where r and θ are as in (2.16) and (2.19), and λ1

is the first eigenvalue of (2.20).

Remark 2.2. The estimates (2.21) is also valid for Problem (2.16) in a shell region

B=
{

x∈R
n| r0< |x|< r1

}
, (2.22)

if r0≪r1. The spectral equations for subatomic particles are defined in such shell-regions
as (2.22).

To prove Theorem 2.3, we need to introduce a lemma, which is due to H. Weyl [10];
see also [1].

Lemma 2.1 (H. Weyl). Let λN be the N-th eigenvalue of the m-th order elliptic operator

(−1)m∆me=λe for x∈Ω⊂R
n,

Dke|∂Ω =0 for 0≤ k≤m−1,
(2.23)

then λN has the asymtptotical relation

λN ∼λ1N2m/n, (2.24)

where λ1 is the first eigenvalue of (2.23).

Proof of Theorem 2.3. The ball Br can be written as

Br =
{

y= rx | x∈B1

}
.

Note that ∂/∂y= r−1∂/∂x, (2.16) can be equivalently expressed as

−∆ϕ+r2V(rx)ϕ=βϕ for x∈B1,

ϕ=0 for x∈∂B1,
(2.25)

and the eigenvalue λ of (2.16) is

λ=
1

r2
β, where β is the eigenvalue of (2.25).

Hence the number of negative eigenvalues of (2.16) is the same as that of (2.25), and we
only need to prove (2.21) for (2.25).
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By (2.17), the equation (2.25) is approximatively in the form

−∆ϕ+r2+αV0(x)ϕ=βϕ for x∈B1,

ϕ=0 for x∈∂B1.
(2.26)

Based on Assertion (2) in Theorem 2.2, we need to find N linear independent functions
ϕn∈H1

0(B1) (1≤n≤N) satisfying

∫

B1

[
|∇ϕ|2+r2+αV0(x)ϕ2

]
dx<0, (2.27)

for any ϕ∈span {ϕ1,··· ,ϕN} with ||ϕ||L2 =1.

To this end, we take the eigenvalues {λn} and eigenfunctions {en} of (2.20) such that

0<λ1≤···≤λN <λN+1,

and

λN < θr2+α≤λN+1. (2.28)

For the eigenfunctions en, we make the extension

ϕn =

{
en for x∈Ω,

0 for x∈B1/Ω.

It is known that ϕn is weakly differentiable, and ϕn∈H1
0(Ω). These functions ϕn (1≤n≤

N) are what we need. Let

ϕ=
N

∑
n=1

αn ϕn, ||ϕ||L2 =1.

By Assertion (2) in Theorem 2.1, ϕn (1≤n≤N) are orthonormal:

∫

B1

ϕi ϕjdx=
∫

Ω
eiejdx=δij.

Therefore we have

||ϕ||L2 =
N

∑
n=1

α2
n =1. (2.29)
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Thus the integral in (2.27) is
∫

B1

[|∇ϕ|2+r2+αV0(x)ϕ2]dx

=
∫

Ω
−
(

N

∑
n=1

αnen

)(
N

∑
n=1

αn∆en

)
dx+r2+α

∫

Ω
V0(x)ϕ2dx

=
N

∑
n=1

α2
nλn+r2+α

∫

Ω
V0(x)ϕ2dx

≤
N

∑
n=1

α2
nλn−θr2+α by (2.19)

<0 by (2.28) and (2.29).

It follows from Theorem 2.2 that there are at least N negative eigenvalues for (2.26). When
θr2+α≫1 is sufficiently large, the relation (2.28) implies that

λN ≃ θr2+α. (2.30)

The result (2.21) follows from (2.24) and (2.30). The proof is complete.

Remark 2.3. In Part 2, we shall see that for particles with mass m, the parameters in (2.21)
are

α=0, r=1, θ=4mρ2
1g2/h̄2ρ,

where g= gw or gs is the weak or strong interaction charge, ρ is the particle radius, and
ρ1 is the weak or strong attracting radius. Hence the number of energy levels of massive
particles is given by

N=

[
4

λ1 A

ρ2
1

ρ

mc

h̄

g2

h̄c

]3/2

,

where λ1 is the first eigenvalue of −∆ in the unit ball B1, and A is a constant.

3 Spectrum of Weyl operators

3.1 Wave equations for massless particles

First, we recall a basic postulate of quantum mechanics.

Basic Postulate of Quantum Mechanics. For a quantum system with observable Hermit
operators L1,··· ,Lm, if the physical quantities lk corresponding to Lk (1≤k≤m) satisfy a relation:

H(l1,··· ,lm)=0, (3.1)

then the following equation induced from (3.1)

H(L1,··· ,Lm)ψ=0 (3.2)
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describes the system provided the operator H(L1,··· ,Lm) in (3.2) is Hermitian.

The classical quantum mechanical equations, such as the Schrödinger equation, the
Klein-Gordon equation and the Dirac equations, are based on this Basic postulate.

It is known that the basic equations describing a free and massless particles are the
Weyl equations:

∂ψ

∂t
= c(~σ ·~∂)ψ, (3.3)

where ψ=(ψ1,ψ2)T is a two-component Weyl spinor,~∂=(∂1,∂2,∂3) is the gradient oper-
ator, ~σ=(σ1,σ2,σ3) is the Pauli matrix operator, and the Pauli matrices σk (1≤ k≤ 3) are
given by

σ1 =

(
0 1
1 0

)
, σ2=

(
0 −i
i 0

)
, σ3=

(
1 0
0 −1

)
.

The Weyl equations (3.3) also enjoy the Basic Postulate. In fact, the energy and momen-
tum operators E and P for the Weyl spinor are given by

E= ih̄
∂

∂t
, P= ih̄(~σ·~∂). (3.4)

By the de Broglie relation
E= h̄ω, P= h̄/λ, c=ωλ,

we get that
E= cP, (3.5)

and (3.3) follows from (3.4) and (3.5).
For a massless particle system in a bound state by either weak or strong interaction,

(3.4) is replaced by

E= ih̄
∂

∂t
−V, P= ih̄(~σ·~D), (3.6)

where V= gA0 is the potential, g is the weak or strong charge,

Aµ=(A0,A1,A2,A3)

represents the combined gauge potential for either weak or strong interaction derived
using PRI [6], and the differential operator ~D=(D1,D2,D3) is defined by

Dj=∂j+i
g

h̄c
Aj.

By the weakton model developed in [6, 7], the mediators such as photons and gluons
consist of two massless weaktons, which are bound in a small ball Br by the weak and
strong interactions. Hence the Weyl spinor ψ of each weakton is restricted in a small ball,
i.e.

ψ=0 ∀x 6∈Br.
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which implies the boundary condition

ψ|∂Br
=0. (3.7)

However, in mathematics the boundary problem for the Weyl equations generated by
(3.5) and (3.6) given by

ih̄
∂ψ

∂t
= ih̄c(~σ·~D)ψ+V(x)ψ

ψ|∂Br
=0

(3.8)

is in general not well-posed. The main reason is that equations (3.8) are first-order differ-
ential equations and the Dirichlet boundary condition is over-determined.

Hence, for the massless particle system with the boundary condition (3.7), we have to
consider the relation

PE= cP2, (3.9)

which is of first order in t. It is known that the operator PE is Hermitian if

PE=EP.

It implies PE should be in the form

PE=PE0−
1

2
(PV+VP), E0= ih̄

∂

∂t
. (3.10)

Thus the boundary problem for a massless system is generated by (3.9) with (3.10), and
is given in the following general form

(~σ·~D)
∂ψ

∂t
= c(~σ·~D)2ψ− ig

2h̄

[
(~σ·~D)A0+A0(~σ·~D)

]
ψ,

ψ|∂Ω =0,
(3.11)

where Ω⊂Rn is a bounded domain, and ~D is as in (3.6).

3.2 Spectral theory of Weyl operators

The equations (3.11) describe bound states of a massless particle system. The solutions ψ
of the bound state equations (3.11) take in the following form

ψ= e−iλt/h̄ ϕ, ϕ=

(
ϕ1

ϕ2

)
.

Then equations (3.11) are reduced to the following eigenvalue problem

− h̄c
(
~σ·~D

)2
ϕ+

ig

2
{(~σ ·~D),A0}ϕ= iλ(~σ ·~D)ϕ,

ϕ|∂Ω=0,
(3.12)
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where {(~σ·~D),A0} is the anti-commutator defined by

{(~σ·~D),A0}=(~σ ·~D)A0+A0(~σ·~D).

Definition 3.1. A real number λ and a two-component wave function ϕ∈H1
0(Ω,C2) are called

the eigenvalue and eigenfunction of (3.12), if (λ,ϕ) satisfies (3.12) and
∫

Ω
ϕ†[i(~σ ·~D)ϕ]dx>0. (3.13)

Remark 3.1. The physical significance of (3.13) is that the kinetic energy E=cP is positive,
i.e. E>0.

Remark 3.2. The equation (3.12) is essentially an eigenvalue problem of the first order
differential operator:

ih̄c(~σ·~D)+gA0,

which is called the Weyl operator. In addition, the operator (~σ·~D)2 is elliptic and can be
rewritten as

(~σ·~D)2=D2− g

h̄c
~σ·curl ~A. (3.14)

The ellipticity of (3.14) ensures the existence of eigenvalues of (3.12).

Note also that ~A = (A1,A2,A3) represents the magnetic-component of the weak or
strong interaction. Hence, in (3.13), the term

g~σ ·curl~A

stands for magnetic energy of the weak or the strong interaction.

Theorem 3.1. For (3.12), the following assertions hold true:

1. The eigenvalues of (3.12) are real, with finite multiplicities, and satisfy

−∞<λ1≤···≤λn ≤··· , λn →∞ for n→∞.

2. The eigenfunctions are orthogonal in the sense that
∫

Ω
ψ†

n

[
i(~σ ·~D)ψl

]
dx=0 ∀n 6= l. (3.15)

3. The number of negative eigenvalues is finite

−∞<λ1≤···≤λN <0.

4. Equations (3.12) have negative eigenvalues if and only if there exists a function ϕ∈H1
0(Ω,C2)

satisfying (3.13) such that

∫

Ω

[
h̄c|(~σ ·~D)ϕ|2+ ig

2
ϕ†
{
(~σ·~D),A0

}
ϕ

]
dx<0. (3.16)
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Proof. It is clear that the operator

L= i(~σ ·~D) : H1
0(Ω,C2)→ L2(Ω,C2),

is a Hermitian operator. Consider a functional F : H1
0(Ω,C2)→R defined by

F(ψ)=
∫

Ω

[
h̄c|Lψ|2+ ig

2
ψ†{(~σ ·~D),A0}ψ

]
dx.

By (3.14), the operator L2 =−(~σ·~D)2 is elliptic. Hence F has the following lower bound
on S:

S=

{
ψ∈H1

0(Ω,C2)
∣∣∣
∫

Ω
ψ†Lψdx=1

}
.

Namely,

min
ψ∈S

F(ψ)>−∞.

Based on the Lagrange multiplier theorem of constraint minimization, the first eigen-
value λ1 and the first eigenfunction ψ1∈S satisfy

λ1=F(ψ1)=min
ψ∈S

F(ψ). (3.17)

In addition, if

λ1≤λ2≤···≤λm

are the first m eigenvalues with eigenfunctions ϕk, 1≤ k≤m, then we have

λm+1=F(ψm+1)= min
ψ∈S,ψ∈H⊥

m

F(ψ), (3.18)

where Hm = span{ψ1,··· ,ψm}, and H⊥
m is the orthogonal complement of Hm in the sense

of (3.15).

Assertions (1)-(4) follow from (3.17) and (3.18), and the proof is complete.

3.3 Estimates on number of negative eigenvalues

If the interaction potential Aµ = {−K,0,0,0} and K > 0 is a constant, then the equation
(3.12) becomes

−∆ϕ= i(λ+K)(~σ·~∂)ϕ in Ω⊂R
n,

ϕ=0 on ∂Ω.
(3.19)

It is clear that the number N of negative eigenvalues of (3.19) satisfies that

βN <K≤βN+1, (3.20)
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and βk is the k-th eigenvalue of the equation

−∆ϕk = iβk(~σ·~∂)ϕk,

ϕk|∂Ω =0.
(3.21)

For (3.21) we have the Weyl asymptotic relation as

βN ∼β1N1/n. (3.22)

Hence from (3.20) and (3.21) we obtain an estimate on the number N of of negative eigen-
values:

N≃
(

K

β1

)n

, (3.23)

where β1 is the first eigenvalue of (3.21).

Remark 3.3. For the mediators such as the photons and gluons, the number N in (3.23) is

N=

(
A

β1

ρ1

ρ

g2
w

h̄c

)3

,

where ρ1,ρ are as in Remark 2.3, β1 is the first eigenvalue of (3.21) on the unit ball Ω=B1,
and A is a constant.

Part II

Physics

4 Spectral equations of subatomic particles

4.1 Constituents of subatomic particles

We first recall the weakton model introduced in [6]. The starting point of the model is the
puzzling decay and reaction behavior of subatomic particles. For example, the electron
radiations and the electron-positron annihilation into photons or quark-antiquark pair
clearly shows that there must be interior structure of electrons, and the constituents of
an electron contribute to the making of photon or the quark in the hadrons formed in
the process. In fact, all sub-atomic decays and reactions show clearly that there must be
interior structure of charged leptons, quarks and mediators. A careful examination of
these subatomic decays and reactions leads us to propose a weakton model in [6], which
is briefly recapitulated as follows. The weakton model is basic for the energy level theory.

Weaktons. There are six elementary particles, which we call weaktons, and their anti-
particles:

w∗, w1, w2, νe, νµ, ντ ,

w̄∗, w̄1, w̄2, ν̄e, ν̄µ, ν̄τ ,
(4.1)
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where νe,νµ,ντ are the three generation neutrinos, and w∗,w1,w2 are three new particles,

called w-weaktons. These are massless, spin-1
2 particles with one unit of weak charge gw.

Both w∗ and w̄∗ are the only weaktons carrying strong charge gs.

Six classes of subatomic particles.

1. Charged Leptons:
e±, µ±, τ±.

2. Quarks:

u, d, s, c, b, t,

ū, d̄, s̄, c̄, b̄, t̄.

3. Baryons:
p, n, Λ, σ±, Σ0, ∆++, ∆±, ∆0, Ξ±, Ξ0, etc.

4. Mesons:
π±, π0, K±, K0, η, ρ±, ρ0, K∗,±, K∗0, ω, etc.

5. Internal Bosons:

W±, Z0, H±, H0 (H±,0 the Higgs particles).

6. Mediators:
γ, g, ν, φγ, φg (the dual bosons of γ and g).

Constituents of subatomic particles.

1. The weakton constituents of charged leptons and quarks are given by

e=νew1w2, µ=νµw1w2, τ=ντw1w2,

u=w∗w1w̄1, c=w∗w2w̄2, t=w∗w2w̄2,

d=w∗w1w2, s=w∗w1w2, b=w∗w1w2,

(4.2)

where c,t and d,s,b are distinguished by their spin arrangements as follows:

u=w∗w1w̄1(⇈↓,�↑,↑↓↑,↓↑↓), c=w∗w2w̄2(⇈↓,�↑),
t=w∗w2w̄2(↑↓↑,↓↑↓), d=w∗w1w2(⇈↓,�↑),
s=w∗w1w2(↑�,↓⇈), b=w∗w1w2(↑↓↑,↓↑↓).

2. Hadrons include baryons and mesons. Baryons consist of three quarks, and mesons
consist of a quark and an antiquark:

Baryons=qqq, Mesons=qq̄. (4.3)
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3. Internal bosons consist of

W+= w̄1w̄2(⇈,�),

W−=w1w2(⇈,�),

Z0=cosθww2w̄2+sinθww1w̄1(⇈,�),

(4.4)

and the dual particles

H+= w̄1w̄2(↑↓,↓↑),
H−=w1w2(↑↓,↓↑),
H0=cosθww2w̄2+sinθww1w̄1(↑↓,↓↑).

(4.5)

where θw =28.76◦ is the Weinberg angle.

4. Mediators:

γ=cosθww1w̄1−sinθww2w̄2(⇈,�), g=w∗w̄∗(⇈,�),

φγ=cosθww1w̄1−sinθww2w̄2(↑↓,↓↑), φg=w∗w̄∗(↑↓,↓↑),
ν=∑

l

αlνl ν̄l(↓↑), ∑
l

α2
l =1.

(4.6)

4.2 Bound potentials of subatomic particles

The main bound energy holding the weaktons and quarks to form subatomic particles is
due to the weak and strong interactions. According to the unified field theory developed
in [6], the sources of the weak and strong forces are the strong and weak charges:

gw the weak charge,

gs the strong charge.

The gauge theories for strong and weak interaction involve 3 weak interaction gauge
potentials Wa

µ (a= 1,2,3), and 8 strong interaction gauge potentials Sk
µ (k= 1,··· ,8). The

PRI applied to both gauge theories leads to the following 4-dimensional potentials:

Wµ =αaWa
µ =(W0,W1,W2,W3),

Sµ =βkSk
µ=(S0,S1,S2,S3),

(4.7)

where Wa
µ (1≤a≤3) and Sk

µ (1≤k≤8) are the SU(2) and SU(3) gauge potentials, αa (1≤
a≤3) and βk (1≤ k≤8) are the SU(2) and SU(3) tensors. The acting forces are given by

Weak force=−gw∇W0,

Strong force=−gs∇S0,
(4.8)
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and the magnetic forces are

Weak magnetism =−gwcurl ~W,

Strong magnetism =−gscurl ~S,
(4.9)

where (W0,~W) and (S0,~S) are as in (4.7).
By (4.8) and (4.9), the weak and strong potentials (4.7) generate the bound states (4.2)-

(4.6) of subatomic particles, with corresponding interactions given as follows:

Charged Leptons and Quarks: weak interaction,

Hadrons: strong interaction,

Internal Bosons: weak interaction,

Gluons g and dual gluons Φg : weak and strong interactions,

Other Mediators: weak interaction.

(4.10)

Weak interaction potentials. The layered weak interaction potentials are

W0= gw(ρ)e
−r/r0

[
1

r
− Aw

ρ

(
1+

2r

r0

)
e−r/r0

]
,

gw(ρ)= gw

(
ρw

ρ

)3

,

(4.11)

where ρw and ρ are the radii of the constituent weakton and the particle, Aw is a constant
depending on the types of particles, and r0 is the radius of weak interaction:

r0≃10−16cm.

Based on (4.11), the weak potential generated by two particles with N1,N2 weak
charges and radii ρ1,ρ2 is given by

Φw =N1N2gw(ρ1)gw(ρ2)e
−r/r0

[
1

r
− Āw√

ρ1ρ2

(
1+

2r

r0

)
e−r/r0

]
, (4.12)

where Āw is a constant depending on the two particles, and gw(ρk) (k = 1,2) are as in
(4.11).

According to the standard model, the coupling constant Gw of the weak interaction
and the Fermi constant G f have the following relation

G2
w =

8√
2

(mwc

h̄

)2
G f ,

G f =10−5h̄c/
(mpc

h̄

)2

,

(4.13)
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where mw and mp are the masses of the W± particles and the proton. By the gauge theory,
we have

gw(ρn)=Gw. (4.14)

It follows from (4.13) and (4.14) that †

g2
w(ρn)=G2

w=
8√
2

(
mw

mp

)2

×10−5h̄c.

Then, by (4.11), we deduce the weak charge gw as

g2
w =0.63×

(
ρn

ρw

)6

h̄c, (4.15)

where ρn is the nucleon radius.

Strong interaction potentials. The layered strong interaction potentials are

S0= gs(ρ)

[
1

r
− As

ρ

(
1+

r

R

)
e−r/R

]
,

gs(ρ)= gs

(
ρw

ρ

)3

,

(4.16)

where As is a constant depending on the particle type, and R is the attracting radius of
strong interactions given by

R=

{
10−16cm for w∗ and quarks,

10−13cm for hadrons.

By the Yukawa theory, we deduce that

g2
s =

2

3(8
√

e−e)

(
ρn

ρw

)6

g2, (4.17)

where e is the base of the natural logarithm, g is the classical coupled constant of strong
interactions between nucleons, and experimentally g2 ∼1−10h̄c.

The strong interaction potential between two particles with N1,N2 charges gs and
radii ρ1,ρ2 is given by

Φs =N1N2gs(ρ1)gs(ρ2)

[
1

r
− Ās√

ρ1ρ2

(
1+

r

R

)
e−r/R

]
, (4.18)

†In our previous work [6], we called gw(ρn) and gs(ρn) as the basic units for weak and strong charges.
However, with the weakton theory of elementary particles [6, 7], it is more natural to gw(ρw) and gs(ρw) as
the basic units of weak and strong charges.
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where gs(ρk) (k=1,2) are as in (4.16), and Ās is a constant depending on the types of two
particle involved.

The weak and strong forces Fw and Fs between two particles are given by

Fw =−∇Φw, Fs =−∇Φs.

4.3 Wave equations of bound states

We infer from (4.2)-(4.6) that a subatomic particle consists of two or three fermions with
wave functions:

Ψ1,··· ,ΨN for N=2,3. (4.19)

Because the bound energy of each fermion is approximately the superposition of the
remaining N−1 particles. Thus the bound potential for each fermion takes the form

Aµ=

{
(N−1)Wµ for weak interaction,

(N−1)Sµ for strong interaction,
(4.20)

where Wµ,Sµ are as in (4.7).

Dynamic equations of bound states for massless particles. The wave equations for the massless
case are the modified Weyl equations given by (3.11).

Dynamic equations of bound states for massive particles. Let the masses of the constituent
fermions be given as follows

m=




m1 0

. . .

0 mN


.

Then the N wave functions (4.19) satisfy the following Dirac equation
(

iγµDµ−
mc

h̄

)
Ψ=0, (4.21)

where Ψ=(Ψ1,··· ,ΨN)T, and

Dµ=∂µ+i
g

h̄c
Aµ with Aµ be given in (4.20).

We know that each wave function Ψk in (4.19) is a four-component Dirac spinor:

Ψk =(Ψk
1,Ψk

2,Ψk
3,Ψk

4)
T for 1≤ k≤N.

Hence equations (4.21) take the following equivalent form

(
ih̄

∂

∂t
−gA0−c2mk

)(
Ψk

1

Ψk
2

)
= ich̄(~σ·~D)

(
Ψk

3

Ψk
4

)
,

(
ih̄

∂

∂t
−gA0+c2mk

)(
Ψk

3

Ψk
4

)
= ich̄(~σ·~D)

(
Ψk

1

Ψk
2

)
,

(4.22)
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where~σ=(σ1,σ2,σ3) is the Pauli matrix operator.

4.4 Spectral equations of bound states

We now derive spectral equations for both massive and massless bound states from (4.22)
and (3.11).

A. Massive bound states. Consider the case where m 6= 0. Let the solutions of (4.22) be
written in the form as

Ψk = e−i(λ+mkc2)t/h̄ψk.

Then equations (4.22) become

(λ−gA0)

(
ψk

1

ψk
2

)
= ich̄(~σ·~D)

(
ψk

3

ψk
4

)
, (4.23)

(λ−gA0+2mkc2)

(
ψk

3

ψk
4

)
= ich̄(~σ·~D)

(
ψk

1

ψk
2

)
, (4.24)

for 1≤ k≤N. The equations (4.24) can be rewritten as

(
ψk

3

ψk
4

)
=

ih̄

2mkc

(
1+

λ−gA0

2mkc2

)−1

(~σ·~D)

(
ψk

1

ψk
2

)
. (4.25)

In physics, λ is the energy, and λ−gA0 is the kinetic energy

λ−gA0=
1

2
mkv2.

For the case‡ where v2/c2≃0, (4.25) can be approximately expressed as

(
ψk

3

ψk
4

)
=

ih̄

2mkc

(
~σ·~D

)(ψk
1

ψk
2

)
.

Inserting this equation into (4.23), we deduce that

(λ−gA0)

(
ψk

1

ψk
2

)
=− h̄2

2mk
(~σ·~D)2

(
ψk

1

ψk
2

)
. (4.26)

Now, we need to give the expression of (~σ·~D)2. To this end, note that the Pauli matri-
ces satisfy

σ2
k =1, σkσj =−σjσk = iε jklσl .

‡Note that the general case can be studied as well involving variable coefficient elliptic operators, and the
same results hold true.
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Hence we obtain

(~σ·~D)2=

(
3

∑
k=1

σkDk

)2

=D2+i~σ·(~D×~D). (4.27)

With ~D=∇+i
g
h̄c
~A, we derive that

~D×~D= i
g

h̄c

[
∇× ~A+ ~A×∇

]
.

Note that as an operator we have

∇× ~A=curl~A− ~A×∇.

Hence we get

~D×~D= i
g

h̄c
curl~A.

Thus, (4.27) can be written as

(~σ·~D)2=D2− g

h̄c
~σ·curl~A. (4.28)

This is the expression given in (3.14).
By (4.28), the spectral equations (4.26) are in the form

[
− h̄2

2mk
D2+gA0

](
ψk

1

ψk
2

)
+~µk ·curl~A

(
ψk

1

ψk
2

)
=λ

(
ψk

1

ψk
2

)
, (4.29)

where D=(D1,D2,D3), (A0,A1,A2,A3) is as in (4.20), and

~µk =
h̄g

2mk
~σ, Dj=∂j+i

g

h̄c
Aj for 1≤ j≤3. (4.30)

The equations (4.29) are supplemented with the Dirichlet boundary conditions:

(ψk
1,ψk

2)|∂Ω =0 where Ω⊂R
3. (4.31)

B. Massless bound states. For massless systems, the spectral equations are given by (3.12),
which, by (4.28), can be rewritten as

[
−h̄cD2+g~σ ·curl~A

](ψk
1

ψk
2

)
+

ig

2

{
(~σ·~D),A0

}(ψk
1

ψk
2

)

=iλ
(
~σ·~D

)(ψk
1

ψk
2

)
for 1≤ k≤N,

(ψk
1,ψk

2)|∂Ω =0,

(4.32)
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where {A,B}=AB+BA is the anti-commutator.

C. Magnetism of weak and strong interactions. In the equations (4.29)-(4.30) and (4.32) for
bound states, we see that there are terms

~µk ·curl~A for massive particle systems, (4.33)

g~σ·curl~A for massless particle systems, (4.34)

where ~µk = h̄g
2m~σ represents magnetic moment, and the term in (4.34) is magnetic force

generated by either weak or strong interaction. In other words, in the same spirit as
the electric charge e producing magnetism, the weak and strong charges gw,gs can also
produce similar effects, which we also call magnetism.

Indeed, all three interactions –electromagnetic, weak and strong interactions– enjoy a
common property that moving charges generate magnetism, due mainly to the fact that
they are all gauge fields with gauge groups U(1), SU(2) and SU(3), respectively.

5 Energy levels of subatomic particles

5.1 Charged leptons and quarks

In (4.2), charged leptons and quarks are made up of three weaktons, with masses caused
by the deceleration of the constituent weaktons. Let the masses of the constituent weak-
tons be m1,m2,m3, and the wave functions of these weaktons be given by

ψk =

(
ψk

1

ψk
2

)
for k=1,2,3.

Here ψk
1 and ψk

2 represent the left-hand and right-hand states. The bound states are due
to the weak interaction, and the potential in (4.20) takes the form

Aµ =2Wµ =2(W0,~W).

By (4.29)-(4.31), the spectral equations for charged leptons and quarks are

− h̄2

2mk

(
∂j+i

2gw

h̄c
Wj

)2

ψk+2(gwW0+~µk
w ·curl ~W)ψk

=λψk in ρw < |x|<ρ,

ψk|∂Bρw
=0, ψk|∂Bρ

=0,

(5.1)

for 1≤k≤3, where ρw is the weakton radius, ρ is the attracting radius of weak interaction,
W0 is given by (4.11), and

~µk
w =

h̄gw

2mk
~σ is the weak magnetic moment.
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With (5.1), we are in position now to derive a few results on energy levels for charged
leptons and quarks.

A. Bound states and energy levels. We know that the negative eigenvalues and eigenfunc-
tions of (5.1) correspond to the bound energies and bound states. Let

−∞<λ1≤···≤λN <0 (5.2)

be all negative eigenvalues of (5.1) with eigenfunctions

ψ1,··· ,ψN for ψn =(ψ1
n,ψ2

n,ψ3
n)

T.

Each bound state ψn satisfies

∫

Bρ

|ψk
n|2dx=1 for 1≤ k≤3, 1≤n≤N. (5.3)

Then we deduce from (5.1) and (5.3) that

λn =
h̄

2mk

∫

Bρ

∣∣∣(∇+i
gw

h̄c
~W)ψk

n

∣∣∣
2
dx (5.4)

+2
∫

Bρ

ψk†
n (~µk

w ·curl~A)ψk
ndx+2

∫

Bρ

gwW0|ψn|2dx.

In the right-hand side of (5.4), the first term stands for the kinetic energy, the second term
stands for the weak magnetic energy, and the third term stands for the weak potential
energy. By (4.11), the potential energy in (5.4) is negative. Hence the bound energy can
be written as

λn =kinetics energy+ magnetic energy+ potential energy. (5.5)

B. Masses. Each particle corresponds to an energy level En, and its mass Mn and λn satisfy
the following relation

Mn=
3

∑
i=1

mi+
3g2

w

ρwc2
+

λn

c2
, (5.6)

where g2
w/ρw represents the intrinsic energy of the constituent weakton.

C. Parameters of electrons. We recall the weak interaction potential (4.11) for the weaktons,
which is written as

W0= gw

[
1

r
− Aw

ρw

(
1+

2r

r0

)
e−r/r0

]
e−r/r0 . (5.7)

where Aw is the constant for weaktons.
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Assume that the masses of three constituent weaktons are the same, and we ignore

the magnetism, i.e. let ~W=0. Then (5.1) is reduced to

− h̄2

2mw
∆ψ+2gwW0ψ=λψ for ρw < |x|<ρ,

ψ=0 for |x|=ρw , ρ.

(5.8)

We shall apply (5.7) and (5.8) to derive some basic parameters and their relations for
bound states of electrons.

Let λe and ψe be a spectrum and the corresponding bound state of an electron, which
satisfy (5.8). It follows from (5.7) and (5.8) that

λe =
1

2
mwv2+

2g2
w

re
− 2Awg2

w

ρw
κe, (5.9)

where 1
2 mwv2 is the kinetic energy of each constituent weakton in the electron, re is the

radius of the naked electron, and κe is a new parameter for the electron:

re =
∫

Bρ

1

r
e−r/r0 |ψe|2dr,

κe =
∫

Bρ

(
1+

2r

r0

)
e−2r/r0 |ψe|2dx,

(mwv

h̄

)2
=
∫

Bρ

|∇ψe|2dx.

(5.10)

These three parameters are related with the energy levels of an electron, i.e. with the λn

and ψn.

The most important case is the lowest energy level state. We shall use the spherical
coordinate to discuss the first eigenvalue λ1 of (5.8). Let the first eigenfunction ψe be in
the form

ψe = ϕ0(r)Y(θ,ϕ).

Then ϕ0 and Y satisfy

− h̄2

2mw

1

r2

d

dr
(r2 d

dr
)ϕ0+2gsW0 ϕ0+

βk

r2
ϕ0=λe ϕ0,

ϕ0(ρw)= ϕ0(ρ)=0,

(5.11)

and [
1

sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

]
Yk =βkYk, (5.12)

where βk = k(k+1), k=0,1,··· .
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Because λe is the minimal eigenvalue, it implies that βk = β0 =0 in (5.11). The eigen-
function Y0 of (5.12) is given by

Y0=
1√
4π

.

Thus ψe is as follows

ψe=
1√
4π

ϕ0(r), (5.13)

and λe and ϕ0 are the first eigenvalue and eigenfunction of the following equation

− h̄2

2mw

1

r2

d

dr

(
r2 d

dr

)
ϕ0+2gwW0 ϕ0=λ1 ϕ0,

ϕ0(ρw)= ϕ0(ρ)=0.

(5.14)

In this case, the parameters in (5.10) are simplified as

re =
∫ ρ

0
rϕ2

0(r)dr,

Ke=
∫ ρ

0
r2

(
1+

2r

r0

)
e−2r/r0 ϕ2

0(r)dr,

(mwν

h̄

)2
=
∫ ρ

0
r2

(
dϕ0

dr

)2

dr.

(5.15)

5.2 Baryons

By (4.3), baryons consist of three quarks

Baryon=qqq, (5.16)

and by (4.2), quarks consist of three w-weaktons

q=w∗ww and q=w∗ww̄.

Each quark possesses one strong charge gs and three weak charges 3gw . It looks as if the
bound energy of baryons is provided by both weak and strong interactions. However,
since the weak interactions is short-ranged, i.e.

range of weak force ≤10−16cm,

and the radii of baryons are

r>10−16cm.
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Hence the main force to hold three quarks together is the strong interaction. Let m1,m2,m3

be the masses of the three constituent quarks in (5.16), and ψk =(ψk
1,ψk

2)
T (1≤ k≤ 3) be

the wave functions. Then the spectral equations (4.29)-(4.31) for baryons are in the form

− h̄2

2mk

(
∇+i

2gs

h̄c
~S

)2

ψk+2gsS0ψk+2~µk
s ·curl~Sψk

=λψk for 1≤ k≤3, ρ0< |x|<ρ1,

ψk =0 for |x|=ρ0,ρ1,

(5.17)

where ρ0 is the quark radius, ρ1 is the strong attracting radius, Sµ =(S0,~S) as in (4.7) is a

4-dimensional strong potential, and ~µk
s = h̄gw~σ/2mk is the strong magnetic moment. The

wave functions ψk are normalized:

∫

Ω
|ψk|dx=1 with Ω={x∈R

3| ρ0< |x|<ρ1}.

By (4.16), the strong interaction potential for quarks is taken in the form

S0= gs

(
ρw

ρ0

)3[1

r
− As

ρ0

(
1+

r

r0

)
e−r/r0

]
, (5.18)

where r0=10−16cm.

Since the proton has a long lifetime, we are interested in its physical parameters. As
in the case of electrons, we also have the following formula for proton:

λp=
1

2
mqv2+

[
2g2

s

rp
− 2Asg2

s

ρ0
κp

](
ρw

ρ0

)6

,

rp =
∫ ρ1

0
rϕ2

p(r)dr,

κp =
∫ ρ1

0
r2

(
1+

r

r0

)
e−r/r0 ϕ2

p(r)dr,

(mqv

h̄

)2

=
∫ ρ1

0
r2

(
dϕp

dr

)2

dr,

(5.19)

where mq is the quark mass, rp is the proton radius, As as in (5.18), and λp,ϕp are the first
eigenvalue and eigenfunctions of the following equation

− h̄2

2mq

1

r2

d

dr

(
r2 d

dr

)
ϕp+2gsS0ϕp=λp ϕp,

ϕp=0 for r=ρ0,ρ1.

(5.20)
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5.3 Mediators

By (4.6), the constituents of mediators consist of two weaktons. In this section, we only
consider gluons and photon.

Gluons. The weakton constituents of gluons are given by

g=w∗w̄∗. (5.21)

Based on the weakton model, w∗ contains a weak charge gw and a strong charge gs. By
(4.15) and (4.17), gw and gs have the same order. Therefore, the interactions for gluons

(5.21) are both weak and strong forces, i.e. the 4-dimensional potential Aµ = (A0, ~A) is
given by

gA0= gwW0+gsS0, g~A= gw
~W+gs

~S. (5.22)

In (5.21), we only need to consider the bound states for a single weakton, i.e. N=1 in
(4.32). Then the spectral equations are written as

− h̄cD2ψ+
[

gw~σ·curl~W+gs~σ·curl~S
]

ψ+
i

2
gw

{
(~σ·~D),W0

}
ψ

+
i

2
gs{(~σ·~D),S0}ψ= iλ(~σ ·~D)ψ for ρw < |x|<ρg ,

ψ=0 for |x|=ρw ,ρg,

(5.23)

where ρw,ρg are the radii of weaktons and gluons, and

~D=∇+
ig

h̄c
~A, where g, ~A are given in (5.22).

Photons. The photon consists of a pair of weakton and anti-weakton:

γ=ww̄.

Because the weaktons w and w̄ only contain a weak charge, the interaction in γ is the
weak force, i.e.

Aµ=Wµ =(W0,~W).

In this case, the spectral equations for a photon are in the form

− h̄c(∇+
igw

h̄c
~W)2ψ+gw~σ·curl~Wψ+

i

2
gw{[~σ ·(∇+

igw

h̄c
~W)], W0}ψ

= iλ[~σ ·(∇+
igw

h̄c
~W)]ψ for ψw < |x|<ργ ,

ψ=0 on |x|=ρw ,ργ,

(5.24)

where ργ is the photon radius.
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5.4 Number of energy levels

Based on the spectral theorems, Theorems 2.1 and 3.1, the number of energy levels of a
subatomic particle is finite. Hence all subatomic particles are in finite and discrete energy
states. By (2.21) and (3.23), we can derive estimates for the numbers of energy levels for
various subatomic particles.

Leptons and quarks. To estimate the numbers of energy levels, we always ignore the effect

of magnetism, i.e., we set ~W = 0 in (5.1). In this case the spectral equations (5.1) are
reduced to

− h̄2

2mw
∆ψ+2gwW0ψ=λψ for ρw < |x|<ρ0,

ψ=0 on |x|=ρw ,ρ0,

(5.25)

where mw is the mass of the constituent weaktons.
Formulas in (4.11) for weaktons can be approximatively written as

W0 =− gw Aw

ρw
. (5.26)

Take a scaling transformation

x=ρ0x1, (5.27)

where ρ0, as in (5.25), is the attracting radius of the weak interaction. Note that the weak-
ton radius ρw is much smaller than ρ0,

ρw ≪ρ0, (5.28)

Hence, by (5.26)-(5.27), the problem (5.25) can be approximately expressed in the form

−∆ψ+
4mw Awρ2

0

h̄2ρw

g2
wψ=λψ for |x|<1,

ψ=0 on |x|=1.

(5.29)

It is clear that the parameters in (2.21) are given by

θ=
4mw Awρ2

0

h̄2ρw

g2
w, r=1, α=0.

Thus the number N of the energy levels for charged leptons and quarks is approximately
given by

N=

[
4

λ1

ρ2
0 Aw

ρw

mwc

h̄

g2
w

h̄c

]3/2

, (5.30)

where λ1 is the first eigenvalue of −∆ in the unit ball B1⊂R3.
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Baryons. For baryons, similar to (5.29) we can transform the spectral equations (5.17) into
the following form

−∆ψ+
4mq Asρ

2
1

h̄2ρq

g2
s ψ=λψ for |x|<1,

ψ=0 on |x|=1,

(5.31)

where ρq is the quark radius, ρ1 is the attracting radius of strong interaction, mq is the
quark mass, and As is the constant as in (5.18).

Then, by (5.31), we derive an estimate of N:

N=

[
4

λ1

ρ2
1 As

ρq

mqc

h̄

g2
s

h̄c

]3/2

, (5.32)

where λ1 is the same as in (5.30).

Photons. For simplicity, here we only consider the photon. Then the spectral equations
(5.24) are reduced to

−∆ϕ= i

(
λ+

Awργ

h̄cρw
g2

w

)
(~σ·~∂)ϕ for |x|<1,

ϕ=0 on |x|=1,

(5.33)

where ργ is the photon radius.
Then, by (5.33), we see that the parameter K in (3.23) is

K=
Awργ

ρw

g2
w

h̄c
.

Thus we derive from (3.23) an estimate for the number of photon energy levels:

N=

[
Aw

β1

ργ

ρw

g2
w

h̄c

]3

, (5.34)

where β1 is the first eigenvalue of (3.21) in B1⊂R3.

5.5 Physical conclusions

To compute the numbers N in (5.30), (5.32) and (5.34), we need to recall the values of g2
w

and g2
s . By (4.15) we have

g2
w

h̄c
=0.63×

(
ρn

ρw

)6

, (5.35)

and in (4.17) taking g2=5h̄c, then we have

g2
s

h̄c
=0.32×

(
ρn

ρw

)6

, (5.36)
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where ρn is the radius of nucleons.
Based on the energy level theory for subatomic particles established above, we de-

duce the following physical conclusions.

First, the energy levels for each subatomic particle are discrete, and the number of energy
levels is finite:

0<E1< ···<EN <∞,

and each energy level En corresponds to an eigenvalue λn of the related eigenvalue prob-
lem as (5.23) or (5.24). Physically, λn represents the bound energy of the particle, and is
related to the energy level En with the following relation:

En =E0+λn for 1≤n≤N. (5.37)

Here E0 is the intrinsic potential energy of the constituent weaktons, which is given by
g2

w/ρw.

Second, by (5.37), we deduce immediately the following upper and lower bounds of the
energy levels of sub-atomic particles:

E0+λ1≤En <E0 for 1≤n≤N. (5.38)

It is clear that the largest and smallest energy levels are given by

Emax=E0+λN , Emin =E0+λ1. (5.39)

The total energy level difference is

Emax−Emin =λN−λ1,

and the average energy level gradient (for two adjacent energy levels) is approximately
given by

△E=
Emax−Emin

N
∼ |λ1|

N
.

In particular, for photons, by |λ1|∼Kh̄c/ργ, the energy gradient can be estimated by

△E∼ h̄c

ργK2
∼ 1

ργ

h̄c
(

g2
w

h̄c

)2
∼10−58eV,

if we take the following approximate values of the related parameters:

ργ =10−19cm,
ρn

ρw
∼106.

One important consequence of finite and discrete energy levels for sub-atomic par-
ticles is that the frequency is also discrete and finite, and are given by ωn = En/h̄ (n =
1,··· ,N). This result shall play an important role in field quantizations.
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