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Abstract

In this paper, we consider a class of the stochastic linear complementarity problems

(SLCPs) with finitely many elements. A feasible semismooth damped Gauss-Newton al-

gorithm for the SLCP is proposed. The global and locally quadratic convergence of the

proposed algorithm are obtained under suitable conditions. Some numerical results are

reported in this paper, which confirm the good theoretical properties of the proposed al-

gorithm.
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1. Introduction

Assume that (Ω,F ,P) is a probability space with Ω ⊆ ℜn, where the probability distribution

P is known. The stochastic linear complementarity problem (see [1–10]) is to find a vector

x ∈ ℜn such that

x ≥ 0, M(ω)x+ q(ω) ≥ 0, xT
[

M(ω)x+ q(ω)
]

= 0, a.e. ω ∈ Ω, (1.1)

where Ω ⊂ ℜn is the underlying sample space and ω ∈ Ω is a random vector with given

probability distribution P and, for each ω, M(ω) ∈ ℜn×n and q(ω) ∈ ℜn.

Problem (1.1) is usually denoted by SLCP(M(ω), q(ω)) or SLCP, briefly. If Ω is a singleton,

SLCP reduces to the intensively studied and standard linear complementarity problem (denoted

by LCP); see [11–14].

In general there is no vector x satisfying (1.1) for all ω ∈ Ω. In order to obtain a reasonable

solution of Problem (1.1), there have been several types of models being proposed. One of them

is the expected value (EV) model [15] that formulates (1.1) as follows: Let M̄ = E[M(ω)] and

q̄ = E[q(ω)] be mathematical expectations of M(ω) and q(ω), respectively. The EV model is

to find an x ∈ ℜn such that

x ≥ 0, ȳ = M̄x+ q̄ ≥ 0, xT ȳ = 0. (1.2)

Another is the expected residual minimization (ERM) model (see [1,7]). The ERM model is to

find an x ∈ ℜn
+ that minimizes the expected total residual function

min
x≥0

f(x) = E
[

‖Φ̃(x, ω)‖2
]

=

n
∑

i=1

E
{

[ϕ(xi,Mi(ω)x+ qi(ω))]
2
}

, (1.3)
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where Mi(ω) (i = 1, · · · , n) is the i-th row of random matrix M(ω) and ϕ : ℜ2 → ℜ is an

NCP-function that satisfies

ϕ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0

and

Φ̃(x, ω) =







ϕ(x1,M1(ω)x+ q1(ω))
...

ϕ(xn,Mn(ω)x+ qn(ω))






.

Recently, Zhou and Caccetta (see [16]) present a new model for a class of stochastic linear

complementarity problems in which sample space Ω has only finitely many elements. Let

Ω = {ω1, ω2, · · · , ωm} and their model is to find an x ∈ ℜn such that

x ≥ 0, M(ωi)x+ q(ωi) ≥ 0, xT
[

M(ωi)x+ q(ωi)
]

= 0, i = 1, · · · ,m, m > 1. (1.4)

In their model it is assumed that pi = P{ωi ∈ Ω} > 0, i = 1, · · · ,m, and let M̄ and q̄ be the

expectation values of the random matrix M(ω) and random vector q(ω), i.e.,

M̄ =
m
∑

i=1

piM(ωi), q̄ =
m
∑

i=1

piq(ωi). (1.5)

They claim that problem (1.4) is equivalent to (1.6)-(1.7):

x ≥ 0, M̄x+ q̄ ≥ 0, xT (M̄x+ q̄) = 0, (1.6)

M(ωi)x + q(ωi) ≥ 0, i = 1, · · · ,m. (1.7)

Furthermore, they define

Φα(x) =







ϕα(x1, (M̄x+ q̄)1)
...

ϕα(xn, (M̄x+ q̄)n)






,

where, ϕα(a, b) = a+ b−
√
a2 + b2+α[a]+[b]+ with α > 0 and [t]+ = max{0, t}. Then problem

(1.4), if it has a solution, can be reformulated as the following minimization problem with

nonnegative constraints

min θ(z) =
1

2
‖H̃(z)‖2,

s.t. z ≥ 0,
(1.8)

where z = (x, y) ∈ ℜn ×ℜmn and

H̃(z) := H̃(x, y) =

(

Φα(x)

M̃(ω)x+ q̃(ω)− y

)

.

Here

M̃(ω) =







M(ω1)
...

M(ωm)






∈ ℜmn×n, q̃(ω) =







q(ω1)
...

q(ωm)






∈ ℜmn.

The authors of [16] propose a semismooth Newton method for solving the constrained mini-

mization problem (1.8). They also examined the effectiveness of the algorithm by means of

numerical experiments.
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The method in [16] can be regarded as a direct application of the asymptotically feasible

semismooth Newton method (AFSN) proposed in [17]. The AFSN yields a stationary point of

(1.8) or generates an infinite sequence, the cluster point of which is a stationary point of (1.8).

The search direction used in AFSN is the asymptotically Newton direction, i.e., the convex

combination of the projected gradient direction and the projected Newton direction. Notice

that, at the k-th iteration, if the Newton equation has no solution, then the Newton direction

obtained by AFSN is not exact. Hence, the asymptotically Newton direction will turn to the

projection gradient direction. In this case, the performance of AFSN may be dissatisfactory.

Since AFSN always chooses the projected direction after certain iteration, the convergence rate

of AFSN is poor for those test problems in [15]. Furthermore, we notice that, when m and n are

large, problem (1.8) has n(m+ 1) variables, which is difficult to solve. Based on these reasons,

we are motivated to seek a new reformulation and algorithms for solving problem (1.8).

In the last decade, there have been strong interests in smoothing Newton-type methods for

solving the classical nonlinear complementarity problems [18–23]. Motivated by Reference [16]

and smoothing Newton-type method, in this paper, we present a smoothing Gauss-Newton

method for solving the stochastic linear complementarity problem (1.4) based on the smooth-

ing Fischer-Burmeister NCP-function. Under suitable assumptions, the proposed algorithm is

proved to be convergent globally and superlinearly/quadratically.

The rest of this paper is organized as follows. In Section 2, we state some preliminary results.

In Sections 3 and 4, we propose a feasible semismooth damped Gauss-Newton method for the

stochastic linear complementarity problem (1.4) and prove the global and locally quadratic

convergence of the proposed algorithm. Some numerical results are reported in Section 5.

The following notations will be used throughout this paper. All vectors are column vectors,

the superscript T denotes transpose, ℜn (respectively, ℜ) denotes the space of n-dimensional real

column vectors (respectively, real numbers), ℜn
+ and ℜn

++ denote the nonnegative and positive

orthants of ℜn, ℜ+ (respectively, ℜ++) denotes the nonnegative (respectively, positive) orthant

in ℜ. For any v ∈ ℜn, let [v]+ := max{v, 0} = (max{v1, 0}, · · · ,max{vn, 0})T . We define

N := {1, 2, · · · , n}. For any vector u ∈ ℜn, we denote the diagonal matrix whose ith diagonal

element is ui by diag{ui : i ∈ N}. For simplicity, we use (u, v) for the column vector (uT , vT )T .

The matrix I represents the identity matrix of arbitrary dimension. The symbol ‖ · ‖ stands for

the 2-norm. For any α, β ∈ R++, α = O(β) (respectively, α = o(β)) means α/β is uniformly

bounded (respectively, tends to zero) as β → 0.

2. Constrained Equations Reformulation

In this section, we reformulate problem (1.4) as a minimization problem with nonnegative

constraints. Notice that (1.6) is a standard LCP and it can be reformulated as a system

of semismooth equations by a smoothing NCP-function. Throughout this paper, we use the

following NCP-function φ : ℜ2 → ℜ [16]:

φα(a, b) = (a+ b)−
√

a2 + b2 + αa+b+. (2.1)

Then, it is easy to verify the following proposition.

Proposition 2.1. Assume that φα is defined by (2.1). Then

(1) φα(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

(2) φα(·) is strongly semismooth on ℜ2.
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(3) φα(·)2 is continuously differentiable on ℜ2.

(4) the generalized gradient ∂φα(a, b) at a point (a, b) ∈ ℜ2 is equal to the set of all (ξa, ξb)

such that

(ξa, ξb) =











(

1− a√
a2 + b2

, 1− b√
a2 + b2

)

+ α(b+∂a+, a+∂b+), if (a, b) 6= (0, 0),

(1 − ζ, 1− η), if (a, b) = (0, 0),

(2.2)

where (ζ, η) is any vector satisfying
√

ζ2 + η2 ≤ 1 and

∂c+ =







1, if c > 0,

{[0, 1]}, if c = 0,

0, if c < 0.

(5) Let {ak}, {bk} ⊂ ℜ be any two sequences such that either ak → −∞, or bk → −∞, or

ak+b
k
+ → +∞. Then |φα(a

k, bk)| → +∞.

Let

Φα(µ, x) =







φα(x1, M̄1x+ q̄1)
...

φα(xn, M̄nx+ q̄n)






, (2.3)

where M̄i and q̄i (i = 1, · · · , n) are the i-th row of matrix M̄ and the i-th component of vector

q̄, respectively, M̄ and q̄ are defined in (1.5). Then, x solves (1.6) if and only if Φα(x) = 0.

Furthermore, let

M(ω) =











M(ω1)

M(ω2)
...

M(ωm)











, q(ω) =











q(ω1)

q(ω2)
...

q(ωm)











.

Thus, if (1.4) has a solution, then solving (1.4) is equivalent to solving the seimismooth system

of equations with nonnegative constraints:

H(x) = 0, with x ≥ 0, (2.4)

where

H(x) =





Φα(x)

G(x)



 , (2.5)

with

G(x) = [M(ω)x+ q(ω)]−. (2.6)

Here, for any x ∈ ℜn, the notation [·]− implies that [x]− = min(0, x) and the minimum is taken

component-wise.

For function H defined in (2.5), we have

Proposition 2.2. Assume that H is defined in (2.4). Then H(x) is local Lipschitz and strongly

semismooth.

Proof. By the fact that [·]− is strongly semismooth and Proposition 2.1 (2), it follows from

Theorems 19 and 20 of [28] that the function H(x) is strongly semismooth. �
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Proposition 2.3. Suppose that LCP (M̄, q̄) is R-regular at a solution x∗. Then, all VΦ ∈
∂CΦα(x

∗) = ∂Φα,1(x
∗)× ∂Φα,2(x

∗)× · · · × ∂Φα,n(x
∗) are nonsingular.

For any x ∈ ℜn, we have that

∂CH(x) =

{(

VΦ

VG

)

: VΦ ∈ ∂CΦα(x), VG ∈ ∂CG(x)

}

, (2.7)

where VΦ ∈ ℜn×n, VG ∈ ℜmn×n. Hence, by Proposition 2.3, we have:

Proposition 2.4. Suppose that x∗ is a solution of (2.4) and that the LCP (M̄, q̄) is R-regular

at the solution x∗. Then, for any

V =

(

VΦ

VG

)

∈ ∂CH(x),

the matrix

V TV = V T
Φ VΦ + V T

G VG

is nonsingular.

For any x ∈ ℜn, an element of the C-subdifferential of ∂CΦα(x) or ∂CG(x) can be calculated

as follwos.

Algorithm 2.1. (Procedure to calculate an element VΦ ∈ ∂CΦα(x))

Step 0. Let x ∈ ℜn be given, and let VΦ,i denote the ith row of the matrix VΦ ∈ ∂CΦα(x).

Step 1. Set S1 = {i : xi = M̄ix+ q̄i = 0} and S2 = {i : xi > 0, M̄ix+ q̄i > 0}.
Step 2. Set c ∈ ℜn such that ci = 1 for i ∈ S1 and ci = 0 for i 6∈ S1.

Step 3. For i ∈ S1, set

VΦ,i =
(

1− ci
√

c2i + (M̄ic)2

)

eTi +
(

1− M̄ic
√

c2i + (M̄ic)2

)

M̄T
i .

Step 4. For i ∈ S2, set

VΦ,i =
(

1− xi
√

x2
i + (M̄ix+ q̄i)2

+ α(M̄ix+ q̄i)
)

eTi +
(

1− M̄ix+ q̄i)
2

√

c2i + (M̄ix+ q̄i)2
+ αxi

)

M̄i.

Step 5. For i 6∈ S1 ∪ S2, set

VΦ,i =
(

1− xi
√

x2
i + (M̄ix+ q̄i)2

)

eTi +
(

1− M̄ix+ q̄i)
2

√

c2i + (M̄ix+ q̄i)2

)

M̄i.
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Algorithm 2.2. (Procedure to calculate an element VG ∈ ∂CG(x))

Step 0. Let x ∈ ℜn be given, and let VG,i denote the ith row of the matrix VG ∈ ∂CG(x),

i = 1, · · · ,mn.

Step 1. Set T1 = {i : Mi(ω)x+ qi(ω) < 0} and T2 = {i : Mi(ω)x+ qi(ω) ≥ 0}.
Step 2. For i ∈ T1, set VG,i = Mi(ω).

Step 3. For i ∈ T2, set VG,i = 0.

Now, we define the merit function of (2.4) by

Ψ(x) =
1

2
‖H(x)‖2. (2.8)

Let

Ψ1(x) =
1

2
‖Φα(x)‖2 (2.9)

and

Ψ2(x) =
1

2
‖G(x)‖2. (2.10)

It is not difficult to see that if (1.4) has a solution, so (2.4) has a solution which is equivalent to

the following optimization problem has a global minimal solution with nonnegative constraints

and the minimal value is zero.

min Ψ(x) =
1

2
‖H(x)‖2,

s.t. x ≥ 0.
(2.11)

One can easily see that x is a stationary point of (2.11) if only if

x ≥ 0, ∇Ψ(x) ≥ 0, xT∇Ψ(x) = 0. (2.12)

In what follows, we will concern with finding a point x which satisfies (2.12).

From [12], we have the following lemma.

Lemma 2.1. The function Ψ(x) is continuously differentiable on ℜn with

∇Ψ(x) := ∇Ψ1(x) +∇Ψ2(x) = V T
Φ Φα(x) + V T

G G(x).

and ∇Ψ(x) is strongly semismooth, i.e.,

∇Ψ(x) = ∇Ψ(x∗) + UT (x− x∗) +O(‖x − x∗‖2),

where U ∈ ∂∇Ψ(x) is given by

U = V T
Φ VΦ + V T

G VG +

(m+1)n
∑

i=1

Hi(x)Ti(x).

Here Ti(x) ∈ ℜn×n is the generalized Hessian of Hi(x).

Throughout this paper, we make the following assumption:
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Assumption 2.1. Ti(x) ∈ ℜn×n, the generalized Hessian of Hi(x), is locally Lipschitz contin-

uous.

Now we examine the boudedness of the level set of problem (2.7). For a given x0 ∈ ℜn
+, the

level set of Ψ(x) is defined as follows:

LΨ(x)(x
0) = {x ∈ ℜn

+ |Ψ(x) ≤ Ψ(x0)}. (2.13)

We recall the definition of the stochastic R0 matrix in [9]. A stochastic matrix M(ω) is

called as a stochastic R0 matrix if

x ≥ 0, M(ω)x ≥ 0, xTM(ω)x = 0, a.e. =⇒ x = 0.

If the expected matrix of M(ω), M̄ = E[M(ω)], is an R0 matrix, then M(·) is a stochastic R0

matrix. However, the converse of this proposition is not true, that is, M(·) being a stochastic

R0 matrix does not imply that there is an ω ∈ Ω such that M̄ = E[M(ω)] is an R0 matrix

(see [9] for more details about the stochastic R0 matrix).

Next, we verify that the level set LΨ(x)(x
0) defined in (2.11) is bounded under the assumption

that M(·) is a stochastic R0 matrix.

Theorem 2.1. The level set LΨ(x)(x
0) defined in (2.11) is bounded for any q(·) if and only if

M(·) is a stochastic R0 matrix.

Proof. We first show the necessity. Let q(ωi) ≡ 0 (i = 1, · · · ,m) and x0 = 0. Then

Ψ(x0) = 0 and 0 ∈ LΨ(x)(x
0) = {x ∈ ℜn

+ |Ψ(x) ≤ Ψ(x0)}.

Suppose that M(·) is not a stochastic R0 matrix. Then there exists an x̂ ≥ 0 with x̂ 6= 0 such

that

x̂ ≥ 0, M(ωi)x̂ ≥ 0, x̂TM(ωi)x̂ = 0, i = 1, · · · ,m.

Thus, we obtain that

x̂T M̄x̂ = 0 and Ψ1(x̂) = 0.

Furthermore, we have

(lx̂)T M̄(lx̂) = 0 and Ψ1(lx̂) = 0, for all l > 0.

Notice that M(ω)(lx̂) + q(ω) = M(ω)(lx̂) ≥ 0. Hence Ψ2(lx̂) = 0, which implies that lx̂ ∈
LΨ(x)(x

0). This contradicts with the boundedness of LΨ(x)(x
0).

Now we prove the sufficiency by contradiction. Suppose there is a sequence {xk} ⊆ LΨ(x)(x
0)

such that ‖xk‖ → +∞ as k → +∞. Let

uk =
xk

‖xk‖ .

Notice that the boundedness of the sequence {uk}, without loss of generality, we can assume

that

lim
k→∞

uk = u∗.

Obviously u∗ ≥ 0 and ‖uk‖ = 1. The following proof is divided into two steps (a) and (b).
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(a) We claim M(ωi)u
∗ ≥ 0 for all i = 1, · · · ,m with reduction to absurdity. Suppose there

exist i0 ∈ {1, · · · ,m} and j0 ∈ {1, · · · , n} such that Mj0(ωi0)u
∗ < 0, where Mj0(·) denotes the

j0-th row. Since

Mj0(ωi)u
∗ = lim

k→∞
Mj0(ωi0)u

k = lim
k→∞

Mj0(ωi0)
xk

‖xk‖

= lim
k→∞

Mj(ωi0)x
k + qj(ωi0)

‖xk‖ .

Notice that Mj0(ωi0)u
∗ < 0, so there exists a k0 > 0 such that

Mj0(ωi0)x
k + qj0(ωi0)

‖xk‖ <
1

2
Mj0(ωi0)u

∗, for all k > k0,

that is, we have for all k > k0,

Mj0(ωi0)x
k + qj0(ωi0) <

1

2
[Mj0(ωi0)u

∗]‖xk‖,

which implies that

Mj0(ωi0)x
k + qj0(ωi0) → −∞, k → +∞.

Then, we have

Ψ2(x
k, yk) → +∞, k → +∞. (2.14)

This contradicts with the fact Ψ2(x
k, yk) ≤ Ψ(x0). So there must be M(ωi)u

∗ ≥ 0 for all

i = 1, · · · ,m.

(b) We deduce that (u∗)TM(ωi)u
∗ = 0 for all i = 1, · · · ,m. We prove this assertion with

absurdity. Suppose that, combined (a), there exist i0 ∈ {1, · · · ,m} and j0 ∈ {1, · · · , n} such

that u∗
j0

> 0 and Mj0(ωi0)u
∗ > 0. We have

Mj0(ωi)u
∗ = lim

k→∞

Mj0(ωi0)x
k

‖xk‖ = lim
k→∞

Mj0(ωi0)x
k + qj0(ωi0)

‖xk‖ .

Thus, there exists a k1 > 0 such that

Mj0(ωi0)x
k + qj0(ωi0)

‖xk‖ >
1

2
Mj0(ωi)u

∗, for all k ≥ k1,

that is,

Mj0(ωi0)x
k + qj0(ωi0) >

1

2
Mj0(ωi)u

∗ · ‖xk‖, for all k ≥ k1,

which implies that

Mj0(ωi0 )x
k + qj0(ωi0) → +∞ as k → +∞.

On the other hand, without loss of generality, assume that Mj(ωi)x
k + qj(ωi) are bounded

below for all i = 1, · · · ,m and j = 1, · · · , n (or else Ψ2(w
k) → +∞). Notice that

M̄j0x
k + q̄j0 =

m
∑

i=1

pi[Mj0(ωi)x
k + qj0(ωi)]

=
∑

i6=i0

pi[Mj0(ωi)x
k + qj0(ωi)] + pi0 [Mj0(ωi0)x

k + qj0(ωi0)]

≥C + pi0 [Mj0(ωi0)x
k + qj0(ωi0)],



A Feasible Semismooth Gauss-Newton Method for Solving a Class of SLCPs 205

where C is some constant. Hence, we have

[M̄j0x
k + q̄j0 ]+ → +∞, as k → +∞. (2.15)

Notice that,

lim
k→∞

xk
j0

‖xk‖ = lim
k→∞

uk
j0

= u∗
j0

> 0. (2.16)

Then, for k > 0 sufficiently large, we have

xk
j0

> 0.

Thus

[xk
j0
]+[M̄j0x

k + q̄j0 ]+ → +∞, as k → +∞. (2.17)

Therefore, by Proposition 2.1 (5), we obtain that

|φα(x
k
j0
, [M̄j0x

k + q̄j0 ])| → +∞, as k → +∞,

which implies that

Ψ1(x
k) → +∞, as k → +∞.

This contradicts that Ψ1(µk, x
k) ≤ Ψ(z0). Thus, it follows from (a) and (b) that for all

i = 1, · · · ,m,

u∗ ≥ 0, M(ωi)u
∗ ≥ 0, (u∗)TM(ωi)u

∗ = 0.

SinceM(·) is a stochasticR0 matrix, we deduce that u∗ = 0, which is inconsistent with ‖u∗‖ = 1.

Hence, the level set LΨ(x)(x
0) must be bounded. So far, we complete the whole proof. �

Let S(x,y) and Sx be the solution sets of (1.8) and (2.7). Let (2.7) be defined by the function

φα(·, ·), and (1.8) be defined by the function φα(·, ·). Then we easily prove that S(x,y) and Sx

are empty or nonepmty simultaneously. In addition, (x∗, y∗) ∈ S(x,y) with y∗ = [Mx∗ + q]+ if

and only if x∗ ∈ Sx under the condition that both S(x,y) and Sx are nonepmty.

By Theorem 2.1, we have the following corollary immediately.

Corollary 2.1. The solution set Sx of (2.7) is nonempty and bounded for all q(·) if M(·) is a

stochastic R0 matrix.

3. The Feasible Semismooth Gauss-Newton Algorithm

In this section, we will propose a feasible damped Gauss-Newton algorithm for solving (2.4).

In order to reduce computation dimensions, we resort to the active set strategy. The active set

is defined by Ak = {i : xk
i > 0 or ∇Ψ(xk)i ≤ 0} for each xk. Now we state the algorithm as

follows.
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Algorithm 3.1. (Feasible Damped Gauss-Newton Algorithm)

Step 0. Choose parameters η, ρ, σ ∈ (0, 1), p ∈ [1, 2]. Let x0 ≥ 0. Set k := 0.

Step 1. Choose V k ∈ ∂CH(xk) and compute ∇Ψ(xk) = (V k)T H(xk). Stop if xk is a

stationary point of (2.11), i.e., xk satisfies (2.12). Otherwise, go to Step 2.

Step 2. Let Ak = {i : xk
i > 0 or ∇Ψ(xk)i ≤ 0}. Solve the following linear equations to get

Gauss-Newton direction dk :

W k
Ak,Ak

d = −∇Ψ(xk)Ak
, (3.1)

where

W k
Ak,Ak

= [(V k)TV k]Ak,Ak
+ βkI.

Here, I is an identity matrix in proper order and

βk =

{

0, if [(V k)TV k]Ak,Ak
is nonsingular,

‖∇Ψ(xk)Ak
‖p, otherwise.

Set

(dkN )i :=

{

dki , i ∈ Ak,

0, i 6∈ Ak.

Step 3. Let

dkG = −γk∇Ψ(xk),

where

γk = min
{

1,−η∇Ψ(xk)TdkN
‖∇Ψ(xk)‖2

}

.

Step 4. Let mk be the smallest nonnegative integer m satisfying

Ψ(xk + d̄k(ρm)) ≤ Ψ(xk) + σ∇Ψ(xk)T d̄kG(ρ
m), (3.2)

where for any λ ∈ (0, 1],

d̄k(λ) = t∗kd̄
k
G(λ) + (1− t∗k)d̄

k
N (λ),

d̄kN (λ) = [xk + λdkN ]+ − xk, d̄kG(λ) = [xk + λdkG]+ − xk,

and t∗(λ) is a minimal point of the following problem:

min
0≤t≤1

Ψ(xk) +∇Ψ(xk)T d̄k +
1

2
(d̄k)T (V k)TV kd̄k, (3.3)

where d̄k = td̄kN (λ) + (1− t)d̄kG(λ). Let λk = ρmk , zk+1 := xk + d̄k(λk).

Step 5. Let k := k + 1 and go to Step 1.

Remark 3.1. One is easy to find that (3.3) can be written as

min
t∈[0,1]

1

2
at2 + bt+ c, (3.4)
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where

a =[d̄kG(λ)− d̄kN (λ)]T (V k)TV k[d̄kG(λ)− d̄kN (λ)], (3.5)

b =[∇Ψ(xk) + (V k)TV kd̄kN (λ)]T [d̄kG(λ)− d̄kN (λ)], (3.6)

c =
1

2
‖H(xk) + V kd̄kN‖2. (3.7)

The minimum point of problem (3.4) is given by

t∗(λ) =















max{0,min{1,− b
a
}}, if a > 0,

0, if a = 0, b ≥ 0,

1, if a = 0, b ≤ 0.

(3.8)

The following lemma can be seen in [17]:

Lemma 3.1. The following statements hold:

(a) For any v ∈ ℜn
+, ([u]+ − u)T ([u]+ − v) ≤ 0 for all u ≤ ℜn.

(b) ‖[u]+ − [v]+‖ ≤ ‖u− v‖ for all u, v ∈ ℜn.

(c) Given x ∈ ℜn and d ∈ ℜn, the function g defined by

g(λ) =
‖[x+ λd]+ − x‖

λ
, λ > 0

is nonincreasing.

By Lemma 3.1, we can prove the following result:

Lemma 3.2. Suppose that the projection-gradient direction d̄kG(λ) is defined by Algorithm 3.1.

Then we have

‖d̄kG(λ)‖2 ≤ λ(dkG)
T d̄kG(λ). (3.9)

Proof. By Lemma 3.1(a), taking u := xk + λdkG, v := xk we get

0 ≥([u]+ − u)T ([u]+ − v)

=([xk + λdkG]+ − [xk + λdkG])
T ([xk + λdkG]+ − xk)

={([xk + λdkG]+ − xk)− λdkG}T ([xk + λdkG]+ − xk)

=(d̄kG − λdkG)
T d̄kG,

that is, (3.9) holds. �

Lemma 3.3. Suppose that xk is not a stationary point of (2.11). Then we have ‖d̄kG(1)‖ > 0.

Proof. We prove it by contradiction. Suppose that ‖d̄kG(1)‖ = 0. Then

0 =[xk + dkG]+ − xk = [xk − γk∇Ψ(xk)]+ − xk,

i.e.,

xk = [xk − γk∇Ψ(xk)]+,

which implies that xk is a stationary point of (2.11). This is a contradiction, so we complete

the proof. �

Next we show that Algorithm 3.1 is well-defined. We only need to prove that Step 4 is

finitely terminated, i.e., d̄(λ) is a descent direction for all λ > 0 sufficiently small.
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Theorem 3.1. Suppose that xk is not a stationary point of (2.7). Then there exists a constant

λ̄ ∈ (0, 1] such that d̄k(λ) is a descent direction of Ψ(xk) at point xk for any λ ∈ (0, λ̄] and

Ψ(xk + d̄(λ)) ≤ Ψ(xk) + σ∇Ψ(xk)T d̄kG(λ). (3.10)

Proof. Notice that the smallest eigenvalue ς of the matrixW k is positive, i.e., ς = λmin(W
k) >

0. Then, from Step 3 of Algorithm 3.1 we have

‖dkN‖ = ‖[W k]−1∇Ψ(xk)‖ ≤ 1

ς
‖∇Ψ(xk)‖.

Since xk is not a stationary point of problem (2.11), it holds that ∇Ψ(xk) 6= 0. Thus we have

γk =min

{

1,−η∇Ψ(xk)TdkN
‖∇Ψ(xk)‖2

}

=min

{

1, η
∇Ψ(xk)TAk

(W k
Ak,Ak

)−1∇Ψ(xk)Ak

‖∇Ψ(xk)‖2

}

(3.11)

>0.

Hence, we have

‖dkG‖ = ‖ − γk∇Ψ(xk)‖ ≤ ‖∇Ψ(xk)‖.

Let C0 = max{1, 1/ς}‖∇Ψ(xk)‖. Then ‖dkN‖ ≤ C0 and ‖dkG‖ ≤ C0. By using nonexpansivity

of the projection operator, we get

‖d̄kN (λ)‖ = ‖max(xk + λdkN , 0)− xk‖ ≤ λ‖dkN‖ ≤ C0λ,

‖d̄kG(λ)‖ = ‖max(xk + λdkG, 0)− xk‖ ≤ λ‖dkG‖ ≤ C0λ.

Thus, for all λ ∈ [0, 1],

‖d̄k(λ)‖ = ‖t∗kd̄kG + (1− t∗k)d̄
k
N‖ ≤ C0λ.

So we have ‖d̄kN (λ)‖ = O(λ), ‖d̄kG(λ)‖ = O(λ) and ‖d̄k(λ)‖ = O(λ).

Next we show that ∇Ψ(xk)T d̄k(λ) < 0. By (3.3) we have

∇Ψ(xk)T d̄k(λ) +
1

2
d̄k(λ)T (V k)TV kd̄k(λ)

≤∇Ψ(xk)T d̄kG(λ) +
1

2
d̄kG(λ)

T (V k)TV kd̄kG(λ).

Notice that there exists a constant C1 > 0 such that ‖(V k)TV k‖ ≤ ‖W k‖ ≤ C1 for all k. Hence,

we have

1

2
d̄k(λ)T (V k)TV kd̄k(λ) = O(λ2),

1

2
d̄kN (λ)T (V k)TV kd̄kN (λ) = O(λ2).

Thus, one has

∇Ψ(xk)T d̄k(λ) ≤ ∇Ψ(xk)T d̄kG(λ) +O(λ2) = ∇Ψ(xk)T d̄kG(λ) + o(λ).

By Lemmas 3.1(c), 3.2, 3.3 and Step 3 of Algorithm 3.1 we have

∇Ψ(xk)T d̄kG(λ) =− 1

γk
(dkG)

T d̄kG(λ) ≤ − 1

γkλ
‖d̄kG(λ)‖2

≤− λ‖d̄kG(1)‖
γk

≤ −λ‖d̄kG(1)‖ < 0. (3.12)
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Therefore, we have ∇Ψ(xk)T d̄k(λ) < 0 for λ > 0 sufficiently small, which implies d̄k(λ) is a

decent direction of Ψ(xk).

Now we come to prove that (3.13) holds. Notice that Ψ(·) is continuously differentiable.

Then, by (3.12), we have for λ > 0 sufficiently small,

Ψ(xk + d̄k(λ)) =Ψ(xk) +∇Ψ(xk)T d̄k(λ) + o(λ)

≤Ψ(xk) +∇Ψ(xk)T d̄kG(λ) + o(λ)

=Ψ(xk) + σ∇Ψ(xk)T d̄kG(λ) + (1 − σ)∇Ψ(xk)T d̄kG(λ) + o(λ)

≤Ψ(xk) + σ∇Ψ(xk)T d̄kG(λ)− (1 − σ)λ‖d̄kG(1)‖2 + o(λ). (3.13)

Hence, there exists a constant λ̄ ∈ (0, 1] such that

Ψ(xk + d̄k(λ)) ≤ Ψ(xk) + σ∇Ψ(xk)T d̄kG(λ), for all λ ∈ (0, λ̄],

which completes the proof. �

Corollary 3.1. Algorithm 3.1 is well defined. Furthermore, let {xk} be a sequence generated

by Algorithm 3.1. Then {xk} ⊆ ℜn
+.

Proof. By the construction of Algorithm 3.1, we need only to prove Step 4 is well defined.

From Theorem 3.1 we know that the line-search (3.2) is finitely terminated. So Algorithm 3.1

is well defined.

Furthermore, for any λk ∈ (0, 1] and xk ≥ 0, we have

xk+1 =xk + d̄k(λk)

=xk + t∗kd̄
k
G(λ) + (1− t∗k)d̄

k
N (λ)

=t∗(λk)[x
k + λkd

k
G]+ + [1− t∗(λk)][x

k + λkd
k
N ]+ ∈ ℜn

+,

which completes the whole proof. �

4. Convergence Analysis

In this section, we prove the global and locally quadratic convergence of Algorithm 3.1. We

first introduce the following lemma which is easily proved and hence, we omit it.

Lemma 4.1. x̂ ≥ 0 is a stationary point of (2.11) if and only if there exists a constant λ > 0

such that x̂ = [x̂− λ∇Ψ(x̂)]+.

We next prove the following lemma.

Lemma 4.2. Suppose that {xk} generated by Algorithm 3.1 is an infinite sequence and x̃ is

an accumulation point of it. Then if x̃ is not a stationary point of (2.11), there must be

lim infk→∞ γk > 0, where γk is defined by Step 3 of Algorithm 3.1.

Proof. By (3.11), let lim inf
k→∞

γk = γ̃ ≥ 0. Without loss of generality, we can assume that

lim
k→∞

xk = x̃, lim
k→∞

γk = γ̃,
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and

β̃ =

{

0, if [(Ṽ )T Ṽ ]Ã,Ã is nonsingular,

‖∇Ψ(x̃)Ã‖p, otherwise,

where Ṽ ⊂ ∂CH(x̃), Ã = {i : x̃i > 0 or ∇Ψ(x̃)i ≤ 0}. It is easy to find that for sufficiently

large k,

γk = −η∇Ψ(xk)TdkN
‖∇Ψ(xk)‖2 . (4.1)

Notice that if x̃ is not a stationary point of (2.11), then ∇Ψ(x̃)Ã 6= 0. Hence, by (4.1) we have

γ̃ = lim
k→∞

γk = − lim
k→∞

η∇Ψ(xk)TdkN
‖∇Ψ(xk)‖2

=η lim
k→∞

∇Ψ(xk)TAk
(W k

Ak,Ak
)−1∇Ψ(xk)Ak

‖∇Ψ(xk)‖2

=η
∇Ψ(x̃)T

Ã
(W̃Ã,Ã)

−1∇Ψ(x̃)Ã
‖∇Ψ(z̃)‖2

≥ηλmin

(

W̃Ã,Ã)
−1
)‖∇Ψ(x̃)Ã‖2
‖∇Ψ(x̃)‖2 > 0,

which completes the proof. �

The next lemma indicates that both {λk} and {d̄kG(1)} are bounded below if the cluster

point of {xk} is not a stationary point of (2.11).

Lemma 4.3. Suppose that {xk} generated by Algorithm 3.1 is an infinite sequence and x̃ is an

accumulation point of it. If x̃ is not a stationary point of (2.11), then

(a) there exists a constant ξ > 0 such that for all k ≥ 0,

‖d̄kG(1)‖ = ‖[xk − γk∇Ψ(xk)]+ − xk‖ ≥ ξ; (4.2)

(b) there exists a constant λ0 > 0 such that λk ≥ λ0 for all k ≥ 0.

Proof. (a) It follows from (3.11) that {γk} is bounded. Notice that x̃ is an accumulation point

of {xk}. So, without loss of generality, we can assume that limk→∞ xk = x̃ and limk→∞ γk = γ̃0.

Then, we have

lim
k→∞

‖d̄kG(1)‖ = lim
k→∞

‖[xk − γk∇Ψ(xk)]+ − xk‖

=‖[x̃− γ̃0∇Ψ(x̃)]+ − x̃‖.

By Lemma 4.1, we get γ̃0 > 0. In addition, it follows from Lemma 4.1 that ‖[x̃− γ̃0∇Ψ(x̃)]+ −
x̃‖ > 0. Hence, there exists a positive integer k0 > 0 such that for all k ≥ k0,

‖d̄kG(1)‖ ≥ 1

2
‖[x̃− γ̃0∇Ψ(x̃)]+ − x̃‖.

Let

ξ = min
{

‖d̄0G(1)‖, ‖d̄1G(1)‖, · · · , ‖d̄k0

G (1)‖, 1
2
‖[x̃− γ̃0∇Ψ(x̃)]+ − x̃‖

}

.

We obtain immediately that (4.2) holds.
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(b) By (3.13) and (4.2), we have for all λk ∈ (0, 1] and k ≥ 0

Ψ(xk + d̄k(λk)) ≤Ψ(xk) + σ∇Ψ(xk)T d̄kG(λk)− (1− σ)λk‖d̄kG(1)‖2 + o(λk)

≤Ψ(xk) + σ∇Ψ(xk)T d̄kG(λk)− (1− σ)ξ2λk + o(λk).

Therefore, there exists λ1 ∈ (0, 1] such that

−(1− σ)ξ2λk + o(λk) < 0, for all λk ∈ (0, λ1].

Thus for all λk ∈ (0, λ1] and all k ≥ 0,

Ψ(xk + d̄k(λk)) ≤ Ψ(xk) + σ∇Ψ(xk)T d̄kG(λk).

By the updating rule of λk, let λ0 = ρλ1 > 0, we have λk > λ0, for all k ≥ 0. This completes

the whole proof. �

Now we come to consider the global convergence of Algorithm 3.1. We have the following

theorem.

Theorem 4.1. Suppose that {xk} generated by Algorithm 3.1 is an infinite sequence and x∗ is

an accumulation point of {xk}. Then x∗ is a stationary point of (2.11). Furthermore, if the

matrix M(·) is a stochastic R0 matrix, then such an accumulation point must exist.

Proof. We prove the conclusion of the theorem by contradiction. Suppose that x∗ is not a

stationary point of (2.11). Since x∗ is an accumulation point of {xk}, there exists a subsequence

{xki} of {xk} converges to x∗. By Lemma 4.3, there exist constants ξ > 0 and λ0 > 0 such

that ‖d̄ki

G (1)‖ ≥ ξ and λki
≥ λ0 for all ki ≥ 0. It follows from (3.12) that

∇Ψ(xki)T d̄ki

G (λk) ≤ −λk‖d̄ki

G (1)‖2 ≤ −ξ2λ0.

Thus, by the line-search (3.2) we have

Ψ(xki+1) ≤ Ψ(xki)− σξ2λ0.

Then,

Ψ(xki) ≤ Ψ(xki−1) ≤ · · · ≤ Ψ(xki−1+1) ≤ Ψ(xki−1 )− σξ2λ0. (4.3)

From (4.3) we deduce that

Ψ(x∗) ≤ Ψ(x∗)− σξ2λ0,

which implies that ξ2λ0 ≤ 0. This is a contradiction, which proves the first part of the theorem.

Furthermore, by Corollary 2.1, we obtain immediately the second conclusion of the theorem.

The whole proof is completed. �

From now on, we come to prove locally quadratic convergence of Algorithm 3.1. Assume

that x∗ is a stationary point of (2.11). Define the function

r(x) = x− [x−∇Ψ(x)]+. (4.4)

We prove that r(xk) provides a local error bound for the sequence {xk} generated by Algorithm

3.1.
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Lemma 4.4. Suppose that the infinite sequence {xk} generated by Algorithm 3.1 converges to

x∗. If x∗ is a stationary point of (2.11) and every U∗ ∈ ∂∇Ψ(x∗) is positive definite, then for

all xk sufficiently close to x∗, we have

‖xk − x∗‖ ≤ C‖r(xk)‖, (4.5)

where C > 0 is a certain constant.

Proof. By Lemma 2.1, we have for all xk sufficiently close to x∗,

∇Ψ(xk)−∇Ψ(x∗) = Uk(xk − x∗) +O(‖xk − x∗‖2), (4.6)

where Uk ∈ ∂∇Ψ(xk). Notice that every U∗ ∈ ∂∇Ψ(x∗) is positive definite, so for all xk

sufficiently close to x∗, every Uk ∈ ∂∇Ψ(xk) is uniformly positive definite, i.e., there exists a

constant C0 > 0 such that

1

C0
≤ λmin((U

k)−1) ≤ λmax((U
k)−1) ≤ C0 (4.7)

and
1

C0
≤ λmin(U

k) ≤ λmax(U
k) ≤ C0. (4.8)

Thus, it follows from (4.6) that

1

2C0
‖xk − x∗‖ ≤ ‖∇Ψ(xk)−∇Ψ(x∗)‖ ≤ 2C0‖xk − x∗‖.

Notice that

∇Ψ(x∗)T [xk − r(xk)− x∗] =∇Ψ(x∗)T [xk − r(xk)]

=∇Ψ(x∗)T [xk −∇Ψ(xk)]+ ≥ 0.

By Lemma 3.1, we have

[∇Ψ(xk)− r(xk)]T [x∗ − xk + r(xk)]

=([xk −∇Ψ(xk)]+ − [xk −∇Ψ(xk)])T (x∗ − [xk −∇Ψ(xk)]+) ≥ 0.

Adding the last two inequalities, we have

∇Ψ(x∗)T [xk − r(xk)− x∗] + [∇Ψ(xk)− r(xk)]T [x∗ − xk + r(xk)] ≥ 0,

that is,

[∇Ψ(xk)−∇Ψ(x∗)]T (x∗ − xk) + [∇Ψ(xk)−∇Ψ(x∗)]T r(xk)− (x∗ − xk)T r(xk)− ‖r(xk)‖2 ≥ 0.

Thus,

[∇Ψ(xk)−∇Ψ(x∗)]T (xk − x∗)

≤[∇Ψ(xk)−∇Ψ(x∗)]T r(xk) + (xk − x∗)T r(xk)− ‖r(xk)‖2

≤[‖∇Ψ(xk)−∇Ψ(x∗)‖ + ‖xk − x∗‖]‖r(xk)‖
≤(2C0 + 1)‖xk − x∗‖‖r(xk)‖.
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Notice that

[

∇Ψ(xk)−∇Ψ(x∗)
]T

(xk − x∗)

=(xk − x∗)T
[

U(xk − x∗) +O(‖xk − x∗‖2)
]

≥ 1

2C0
‖xk − x∗‖2.

Therefore, we obtain that

1

2C0
‖xk − x∗‖2 ≤ (2C0 + 1)‖xk − x∗‖‖r(xk)‖.

Let C = 2C0(2C0 + 1), we have immediately

‖xk − x∗‖ ≤ C‖r(xk)‖,

which completes the proof of the lemma. �

Lemma 4.5. Assume that {xk} is an infinite sequence generated by Algorithm 3.1 and x∗ is

an accumulation point of it. Suppose that Assumption 2.1 is satisfied. If all U∗ ∈ ∂∇Ψ(x∗) are

positive definite, then for every subsequence {xki} converging to x∗, we have

∇Ψ(xki)Aki
= Uki

Aki
,Aki

(xki − x∗) +O(‖xki − x∗‖2), (4.9)

(dki

N )Aki
= −(xki − x∗)Aki

+O(‖xki − x∗‖2), (4.10)

(d̄ki

N (1))Aki
= −(xki − x∗)Aki

+O(‖xki − x∗‖2), (4.11)

for all xki sufficiently close to x∗, where Uki ∈ ∂∇Ψ(xki) and Aki
= {i : xki

i > 0 or ∇Ψ(xki )i ≤
0}.

Proof. By Lemma 2.1, we have

∇Ψ(xk+i) = ∇Ψ(x∗) + Uki(xki − x∗) +O(‖xki − x∗‖2).

Let

I1 = {i : ∇Ψ(x∗)i > 0}, I2 = {i : x∗
i = ∇Ψ(x∗)i = 0}

and

I3 = {i : x∗
i > 0, and ∇Ψ(x∗)i = 0}.

Thus,

∇Ψ(xk+i)I2∪I3 =∇Ψ(x∗)I2∪I3 + Uki

I2∪I3
(xki − x∗) +O(‖xki − x∗‖2)

=∇Ψ(x∗)I2∪I2 + Uki

I2∪I2,I2∪I3
(xki − x∗)I2∪I3 +O(‖xki − x∗‖2), (4.12)

where Uki

I2∪I3
is the submatrix of Uki whose rows are indexed by I2 ∪ I2 and columns are the

same as Uki . Notice that if xki is sufficiently close to x∗, ∇Ψ(xki)i > 0 for all i ∈ I1 and

xki

i > 0 for all i ∈ I3. We recall Aki
= {i : xki

i > 0 or ∇Ψ(xki)i ≤ 0} and denote

Āki
:= {1, · · · , n}\Aki

=
{

i : xki

i = 0 and ∇Ψ(xki)i > 0
}

.
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Then we have I1 ⊆ Āki
and I2 ⊆ Aki

⊆ I2 ∪ I3 for all xki sufficiently close to x∗. Here, it

follows from (4.12) that

∇Ψ(xk+i)Aki
=∇Ψ(x∗)Aki

+ Uki

Aki
,I2∪I3

(xki − x∗)I2∪I3 +O(‖xki − x∗‖2)

=∇Ψ(x∗)Aki
+ Uki

Aki
,Aki

(xki − x∗)Aki
+O(‖xki − x∗‖2).

Notice that ∇Ψ(x∗)Aki
= 0, we have immediately,

∇Ψ(xk+i)Aki
= Uki

Aki
,Aki

(xki − x∗)Aki
+O(‖xki − x∗‖2).

By local Lipschitz continuity of Ti(x), we have

Uki =(V ki

Φ )TV ki

Φ + (V ki

G )TV ki

G +

(m+1)n
∑

i=1

Hi(x
ki )Ti(x

ki )

=(V ki

Φ )TV ki

Φ + (V ki

G )TV ki

G +O(‖xki − x∗‖)
=W ki +O(‖xki − x∗‖).

Then, from (3.1) and (4.7)-(4.8) we can obtain that

(dki

N )Aki
= −(xki − x∗)Aki

+O(‖xki − x∗‖2).

Furthermore, it follows from last equality that

(xki )Aki
+ (dki

N )Aki
= x∗

Aki
+O(‖xki − x∗‖2).

Thus,

(d̄ki

N (1))Aki
=[(xki + dki

N )Aki
]+ − (xki )Aki

=
(

[x∗
Aki

]+ − (xki)Aki

)

+
(

[x∗
Aki

+O(‖xki − x∗‖2)]+ − [x∗
Aki

]+
)

=− (xki − x∗)Aki
+O(‖xki − x∗‖2),

which completes the whole proof of the lemma. �

The following lemma shows that under the conditions of Lemma 4.5, the project Gauss-

Newton direction is chosen as the search direction of Algorithm 3.1 and the search stepsize is

one.

Lemma 4.6. Suppose that the conditions of Lemma 4.5 hold. Then, we have

(i) d̄ki(1) = −(xki − x∗) +O(‖xki − x∗‖2);
(ii) xki+1 = xki + d̄ki(1).

Proof. (i) Notice that [d̄ki

G (1)− d̄ki

N (1)]Āki
= 0, it follows from (3.5) that

b =[∇Ψ(xki) +W ki d̄ki

N (1)]T [d̄ki

G (1)− d̄ki

N (1)]

=[∇Ψ(xki)Aki
+W ki

Aki
,Aki

d̄ki

N (1)Aki
]T [d̄ki

G (1)− d̄ki

N (1)]Aki
.

From Lemma 4.5 we can deduce that

∇Ψ(xki )Aki
+W ki

Aki
,Aki

d̄ki

N (1)Aki
= O(‖xki − x∗‖2)
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and

‖[d̄ki

G (1)− d̄ki

N (1)]Aki
‖

≤‖[dki

G − dki

N ]Aki
‖

=‖ − γki
∇Ψ(xki)Aki

− [−(xki − x∗)Aki
+O(‖xki − x∗‖2)]‖

≤(C0 + 1)‖(xki − x∗)Aki
‖+O(‖xki − x∗‖2).

Hence, we have b = O(‖xki − x∗‖3). On the other hand, since

0 < γki
≤ −

η∇Ψ(xki)TAki
(dki

N )Aki

‖∇Ψ(xki)‖2 ≤ −
η∇Ψ(xki)TAki

(dki

N )Aki

‖∇Ψ(xki)Aki
‖2 ,

we can deduce that

[d̄ki

G (1)− dki

N ]TAki
∇Ψ(xki)Aki

=[d̄ki

G (1)]T∇Ψ(xki)Aki
− [dki

N ]TAki
∇Ψ(xki )Aki

≥− γki
‖∇Ψ(xki)Aki

‖2 − [dki

N ]TAki
∇Ψ(xki )Aki

≥(η − 1)[dki

N ]TAki
∇Ψ(xki)Aki

=(1− η)∇Ψ(xki )TAki
(W ki

Aki
,Aki

)−1∇Ψ(xki)Aki

≥1− η

C0
‖∇Ψ(xki)Aki

‖2. (4.13)

Hence, by Schwartz inequality, we have

d̄ki

G (1)− dki

N ≥1− η

C0
‖∇Ψ(xki)Aki

‖

=C1‖xki − x∗‖+O(‖xki − x∗‖2),

where C0 = (1 − η)/C0 > 0. Notice that [d̄ki

N (1)− dki

N ]Aki
= O(‖xki − x∗‖2). Thus,

‖[d̄ki

G (1)− d̄ki

N (1)]Aki
‖2

=‖[d̄ki

G (1)− dki

N ]Aki
‖2 − 2[d̄ki

G (1)− dki

N ]TAki
[d̄ki

N (1)− dki

N ]Aki
+ ‖[d̄ki

N (1)− dki

N ]Aki
‖2

≥C2
1‖xki − x∗‖2 + o(‖xki − x∗‖2). (4.14)

From (3.4) and (4.14), we get

a =[d̄ki

G (1)− d̄ki

N (1)]TAki
W ki

Aki
,Aki

[d̄ki

G (1)− d̄ki

N (1)]Aki

≥ 1

2C0
‖[d̄ki

G (1)− d̄ki

N (1)]Aki
‖2

≥ C2
1

2C0
‖xki − x∗‖2 + o(‖xki − x∗‖2),

which implies,

− b

a
= O(‖xki − x∗‖).

Hence, we have

t∗ki
(1) = O(‖xki − x∗‖).
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Notice that d̄ki(1) = t∗ki
(1)d̄ki

G (1) + [1− t∗ki
(1)]d̄ki

N (1). Then by Lemma 4.5 we obtain that

d̄ki(1) =d̄ki

N (1) + t∗ki
(1)[d̄ki

G (1)− d̄ki

N (1)]

=− (xki − x∗) +O(‖xki − x∗‖2), (4.15)

which proves (i).

(ii) Since d̄ki(1) = t∗ki
(1)d̄ki

G (1) + (1− t∗ki
(1))d̄ki

N (1), we have

∇Ψ(xki)T [d̄ki(1)− d̄ki

G (1)]

=[t∗ki
(1)− 1]∇Ψ(xki)TAki

[d̄ki

G (1)− d̄ki

N (1)]Aki

=[t∗ki
(1)− 1]∇Ψ(xki)TAki

[(d̄ki

G (1)− dki

N (1))Aki
+O(‖xki − x∗‖2)]

=[t∗ki
(1)− 1]∇Ψ(xki)TAki

[d̄ki

G (1)− dki

N (1)]Aki
+ o(‖xki − x∗‖2), (4.16)

By (4.9) we have

‖∇Ψ(xki)Aki
‖2 ≥ 1

C2
0

‖xki − x∗‖2 + o(‖xki − x∗‖2). (4.17)

From (4.13) and (4.17) we get

∇Ψ(xki )TAki
[d̄ki

G (1)− dki

N ]Aki
≥1− η

C0
‖∇Ψ(xki)Aki

‖2

≥1− η

C3
0

‖xki − x∗‖2 + o(‖xki − x∗‖2). (4.18)

Using (4.16), (4.18) and t∗ki
(1) = O(‖xki − x∗‖), it is not difficult to see that

∇Ψ(xki)T [d̄ki(1)− d̄ki

G (1)] ≤ [t∗ki
(1)− 1]

1− η

C3
0

‖xki − x∗‖2 + o(‖xki − x∗‖2). (4.19)

Further, we have

−∇Ψ(xki)T d̄ki(1) = −∇Ψ(xki)T [t∗ki
(1)d̄ki

G (1) + (1− t∗ki
(1))d̄ki

N (1)]

=− t∗ki
(1)∇Ψ(xki)TAki

[d̄ki

G (1)]Aki
+ [t∗ki

(1)− 1]∇Ψ(xki)TAki
[(dki

N )Aki
+O(xki − x∗‖2)]

=[1− t∗ki
(1)]∇Ψ(xki )TAki

(W ki

Aki
,Aki

)−1∇Ψ(xki)TAki
+ o(‖xki − x∗‖2)

≥
1− t∗ki

(1)

C3
0

‖xki − x∗‖2 + o(‖xki − x∗‖2). (4.20)

By (4.15) we know that

xki + d̄ki(1)− x∗ = O(‖xki − x∗‖2). (4.21)
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It follows from (4.19), (4.20) and (4.21) that

Ψ(xki + d̄ki(1))−Ψ(xki)

=∇Ψ(xki )T d̄ki(1) +O(‖xki − x∗‖2)
=σ∇Ψ(xki )T d̄ki

G (1) + σ∇Ψ(xki )T [d̄ki(1)− d̄ki

G (1)]

+ (1 − σ)∇Ψ(xki )T d̄ki(1) +O(‖xki − x∗‖2)

≤σ∇Ψ(xki )T d̄ki

G (1) + σ[t∗ki
(1)− 1]

1− η

C3
0

‖xki − x∗‖2

− (1− σ)
1 − t∗ki

(1)

C3
0

‖xki − x∗‖2 +O(‖xki − x∗‖2)

=σ∇Ψ(xki )T d̄ki

G (1)−
1− t∗ki

(1)

C3
0

(1− ση)‖xki − x∗‖2 +O(‖xki − x∗‖2)

≤σ∇Ψ(xki )T d̄ki

G (1).

Therefore, we can deduce that

Ψ(xki + d̄ki(1)) ≤ Ψ(xki) + σ∇Ψ(xki)T d̄ki

G (1)

for all xki sufficiently close to x∗, which implies that

xki+1 = xki + d̄ki(1).

So far, we have proved (ii). �

Now, we come to prove that the sequence {xk} generated by Algorithm 3.1 is quadratically

convergent under suitable conditions. We have the following theorem.

Theorem 4.2. Suppose that the conditions of Lemma 4.5 hold. Then, the sequence {xk} gen-

erated by Algorithm 3.1 converges Q-quadratically to x∗.

Proof. Let {xki} be any subsequence converging to x∗. Then, by Lemma 4.6, we have

‖xki+1 − x∗‖ = ‖xki + d̄ki(1)− x∗‖ = O(‖xki − x∗‖2)

for all xki sufficiently close to x∗. This implies that

‖xki+1 − xki‖ ≤ ‖xki+1 − x∗‖+ ‖xki − x∗‖ → 0 as ki → +∞.

Since x∗ is a stationary point of (2.11) if and only if x∗ = [x∗ −λ∇Ψ(x∗)]+ for any λ > 0, then

by Lemma 4.4 we know that x∗ is an isolated stationary point of (2.11). Thus, it follows from

Proposition 8.3.10 of [12] that {xk} converges to x∗. Combined with Lemmas 4.5 and 4.6, we

obtain

‖xk+1 − x∗‖ = ‖xk + d̄k(1)− x∗‖ = O(‖xk − x∗‖2)

for all xk sufficiently close to x∗, which completes the proof. �
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5. Numerical Experiments

In this section, we will report some numerical results. The test problems are randomly

generated. The procedure to generate a test problem of monotone SLCP (1.4) is from [7, 16].

We recall the procedure as follows. Suppose that

pj = P{ωj ∈ Ω} =
1

m
, j = 1, · · · ,m.

Procedure 5.1.

Step 1. Generate a diagonal matrix D whose elements are determined as

Djj =















1/ν, j = 1,

νλj , j = 2, · · · , n− 1,

ν, j = n,

where ν > 0 and λj, j = 2, · · · , n− 1, are uniform variate in the interval (−1, 1).

Step 2. Generate a random matrix S. By using the singular decomposition of the random

matrix S, we obtain a random orthogonal matrix U ∈ ℜn×n. Let M̄ = UDUT .

Step 3. Generate m random matrices Bi ∈ ℜn×n, i = 1, · · · ,m, whose elements are in the

interval (0, 1). Let

M i = M(ωi) = M̄ + c2(B
i −Bm−i+1), i = 1, · · · ,m,

where c2 > 0.

Step 4. Generate a random vector x̄ ∈ ℜn such that nx(< n) elements are in the interval

(0, c1), c1 > 0, and all the other elements are zero. Let J = {i : x̄i > 0}.
Step 5. For each i = 1, · · · ,m, let nI be the number of elements in the index set Ii =

{j : x̄j = 0, [M(ωi)x̄ + q(ωi)]j > 0} and let nK be the number of elements in the index set

Ki = {j : x̄j = 0, [M(ωi)x̄+ q(ωi)]j = 0}. Let

qij = [q(ωi)]j =







(−M ix̄)j , j ∈ Ki,

(−M ix̄+ c3u
i)j , j ∈ J ,

(−M ix̄+ c4u
i)j , j ∈ Ii,

where c3, c4 ≥ 0 and ui ∈ ℜn is a random vector whose elements in the interval (0, 1).

We can easily see that for the test problem generated by Procedure 5.1, if c3 = 0 then x̄

is a solution of (1.4) and also a global solution of (2.11) with Ψ(x̄) = 0. If c3 > 0, x̄ is not

necessarily a solution of (1.4) and the test problem may have no solutions.

In general, problem (1.4) has no solution. A measure of optimality and feasibility for (1.4)

has been proposed in [7] and employed by [16]. We recall the definitions as follows. Let

Γ(x) := Op(x) + Fe(x), (5.1)

where

Op(x) =

n
∑

i=1

xT [M(ωi)x+ q(ωi)]+, x ∈ ℜn
+, (5.2)
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Table 5.1: Comparison of Algorithm 3.1 and the AFSN for some SLCPs with c3 = 0

Problem Algor. 3.1 AFSN

(n, nx, c2, c3, le) Fe(x1) Op(x1) Iter CPU Fe(x2) Op(x2) Iter CPU

(30, 10, 20, 0, e) 1.11E-12 1.27E-11 4.0 0.0170 2.27E-08 2.98E-07 10.0 0.0252

(30, 10, 20, 0, 10e) 4.86E-12 5.53E-11 4.0 0.0172 2.90E-09 3.68E-08 13.0 0.0293

(30, 10, 20, 0, 20e) 8.13E-12 1.05E-10 4.0 0.0212 9.35E-09 1.34E-07 13.0 0.0306

(30, 10, 20, 0, 30e) 8.41E-12 9.07E-11 4.0 0.0174 4.45E-09 5.68E-08 14.0 0.0322

(30, 10, 20, 0, 40e) 2.13E-12 2.51E-11 4.0 0.0137 1.78E-09 2.42E-08 14.0 0.0368

(30, 10, 20, 0, 50e) 3.51E-12 4.01E-11 4.0 0.0197 8.66E-09 1.10E-07 14.0 0.0340

(90, 30, 20, 0, e) 1.67E-12 3.36E-10 4.0 0.2347 2.93E-09 7.15E-08 11.0 0.2879

(90, 30, 20, 0, 10e) 9.92E-13 2.23E-11 4.0 0.2034 9.94E-09 2.11E-07 13.0 0.2989

(90, 30, 20, 0, 20e) 8.17E-13 1.75E-11 4.0 0.2038 1.08E-08 2.34E-07 13.5 0.3100

(90, 30, 20, 0, 30e) 1.56E-12 3.78E-11 4.0 0.2258 8.77E-10 2.12E-08 14.0 0.3407

(90, 30, 20, 0, 40e) 1.24E-12 2.69E-11 4.0 0.2013 9.06E-09 2.02E-07 14.0 0.3394

(90, 30, 20, 0, 50e) 1.49E-12 3.21E-11 4.0 0.2077 1.31E-08 3.07E-07 14.0 0.3621

(150, 50, 15, 0, e) 1.56E-12 4.41E-11 4.0 0.6977 3.46E-08 1.04E-06 11.0 0.8211

(150, 50, 15, 0, 10e) 1.41E-12 3.94E-11 4.0 0.9187 1.37E-11 4.11E-10 13.0 1.0693

(150, 50, 15, 0, 20e) 2.08E-12 6.27E-11 4.0 0.7406 2.89E-08 8.82E-07 13.0 0.9952

(150, 50, 15, 0, 30e) 2.25E-12 6.48E-11 4.0 0.7299 2.96E-09 9.62E-08 14.0 1.0280

(150, 50, 15, 0, 40e) 1.33E-12 3.89E-11 4.0 0.7647 6.12E-09 1.88E-07 14.0 1.1009

(150, 50, 15, 0, 50e) 1.21E-12 3.16E-11 4.0 0.7129 9.61E-09 3.09E-07 14.0 1.0239

Table 5.2: Comparison of Algorithm 3.1 and the AFSN for some SLCPs with c3 > 0

Problem Algor. 3.1 AFSN

(n, nx, c2, c3, le) Fe(x1) Op(x1) Iter CPU Fe(x2) Op(x2) Iter CPU

(30, 10, 20, 10, e) 1.22E-02 5.45E+02 8.0 0.0619 2.42E+02 2.54E+03 100 0.4978

(30, 10, 20, 10, 10e) 1.01E-02 4.92E+02 8.0 0.0556 2.32E+02 2.20E+03 100 0.5303

(30, 10, 20, 10, 20e) 1.25E-02 5.28E+02 8.0 0.0342 2.06E+02 2.22E+03 100 0.5292

(30, 10, 20, 10, 30e) 8.90E-03 5.12E+02 8.0 0.0365 2.28E+02 2.25E+03 100 0.5109

(30, 10, 20, 10, 40e) 1.19E-02 5.57E+02 8.0 0.0413 2.41E+02 2.69E+03 100 0.5171

(30, 10, 20, 10, 50e) 1.21E-02 5.25E+02 8.0 0.0459 2.13E+02 2.20E+03 100 0.5753

(90, 30, 20, 10, e) 1.24E-02 1.62E+03 8.0 0.5206 6.71E+02 1.17E+04 100 4.4764

(90, 30, 20, 10, 10e) 1.06E-02 1.50E+03 8.5 0.4133 6.96E+02 1.10E+04 100 4.6689

(90, 30, 20, 10, 20e) 1.07E-02 1.57E+03 9.0 0.4099 7.17E+02 1.19E+04 100 4.6406

(90, 30, 20, 10, 30e) 1.15E-02 1.57E+03 8.0 0.3093 6.96E+02 1.14E+04 100 4.5007

(90, 30, 20, 10, 40e) 1.14E-02 1.60E+03 8.0 0.3633 6.93E+02 1.20E+04 100 4.7189

(90, 30, 20, 10, 50e) 1.20E-02 1.52E+03 9.0 0.4110 6.02E+02 1.00E+04 100 4.5162

(150, 50, 20, 10, e) 1.07E-02 2.67E+03 8.5 1.2304 1.19E+03 2.55E+04 100 12.489

(150, 50, 20, 10, 10e) 1.14E-02 2.57E+03 9.5 1.5679 1.21E+03 2.50E+04 100 12.379

(150, 50, 20, 10, 20e) 1.16E-02 2.57E+03 9.0 1.7362 1.12E+03 2.33E+04 100 15.638

(150, 50, 20, 10, 30e) 1.04E-02 2.62E+03 8.0 1.3889 1.21E+03 2.54E+04 100 12.921

(150, 50, 20, 10, 40e) 1.09E-02 2.59E+03 9.0 1.5000 1.19E+03 2.50E+04 100 13.349

(150, 50, 20, 10, 50e) 1.16E-02 2.54E+03 9.0 1.7380 1.16E+03 2.15E+04 100 13.326
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and

Fe(x) =

n
∑

i=1

‖min{0,M(ωi)x+ q(ωi)}‖, x ∈ ℜn
+. (5.3)

Here, the function Op(x) is a measure of optimality and Fe(x) is a measure of feasibility.

We implemented Algorithm 3.1 by our programm codes in Matlab 7.9. All these problems

were done at a PC with Intel(R) Core(TM)2 Duo CPU P7350 @ 2.0GHz and RAM of 2GB.

Parameters c1, c2, c3, c4 and µ are needed to generate the problem. A vector x̄ ∈ ℜn
+ is

randomly generated. The generated expected matrix M̄ is positive definite.

We make a comparison between the Algorithm 3.1 and the AFSN method in [16] on some

problems with c3 = 0 and c3 > 0. For each problem, the starting points are taken as x0 = le,

where l = 1, 10, 20, 30, 40, 50, e = (1, 1, · · · , 1). The problems are generated with

c1 = 20, c4 = 15, ν = 10.

We set m = 100 and n = 30, 60 and 150. The other parameters used in Algorithm 3.1 are as

follows:

η = 0.9, ρ = 0.5, σ = 10−2, α = 10−10.

The iteration is terminated if

max
i≤i≤n

{

|xiΨ(xk)i|
}

< 10−6 and max
i≤i≤n

{

|([∇Ψ(xk)]−)i|
}

< 10−6,

or

kmax = 100.

For each starting point, we generate ten problems and present the average values of the

function Fe(x) and Op(x). In addition, the CPU time and the number of iterations are also

the average values of these ten problems.

In Tables 1 and 2, x1 and x2 are the computed solutions of Algorithm 3.1 and the AFSN,

respectively. Iter denotes the number of iterations. CPU records the CPU time in second for

solving each problem.

The results reported in Tables 1 and 2 indicate that Algorithm 3.1 may yield a solution in

a smaller number of iterations and less CPU time than the AFSN. In addition, we can also see

that most of Fe(x1) and Op(x1) are smaller than Fe(x2) and Op(x2), respectively. Notice that

the fact that H(x, y) = 0 has a solution is necessary for quadratic convergence of the AFSN [16].

Whereas it follows from Theorem 4.2 that the Q-quadratic convergence of Algorithm 3.1 does

not depend on that Eq. (2.4) has a solution, from which we can conclude that the conditions for

the locally Q-quadratic convergence of Algorithm 3.1 is weaker than that of the AFSN in [16].

Notice that problem (1.4) has no solution for c3 > 0. Then, the Q-quadratic convergence

of the AFSN does not hold when c3 > 0. In fact, we can find from Table 2 that Algorithm 3.1

can yield a solution in no more than 10 iterations, whereas AFSN always stops at maximum

number of iterations kmax = 100. Comparing with AFSN, we can conclude that Algorithm 3.1

yields a reasonable solution with higher safety and within smaller number of iterations based

on these numerical results in Tables 1 and 2.
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