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Abstract

The total variation (TV) minimization problem is widely studied in image restora-

tion. Although many alternative methods have been proposed for its solution, the Newton

method remains not usable for the primal formulation due to no convergence. A previous

study by Chan, Zhou and Chan [15] considered a regularization parameter continuation

idea to increase the domain of convergence of the Newton method with some success but

no robust parameter selection schemes. In this paper, we consider a homotopy method for

the same primal TV formulation and propose to use curve tracking to select the regular-

ization parameter adaptively. It turns out that this idea helps to improve substantially

the previous work in efficiently solving the TV Euler-Lagrange equation. The same idea

is also considered for the two other methods as well as the deblurring problem, again with

improvements obtained. Numerical experiments show that our new methods are robust

and fast for image restoration, even for images with large noisy-to-signal ratio.

Mathematics subject classification: 65N06, 65B99.

Key words: Image restoration, Total variation, Newton method, Homotopy method, Cor-

rection and curve tracking.

1. Introduction

It is well known that an image can often become blurry and noisy if corrupted during

formation, transmission or recording process. This degradation makes it difficult to do further

image processing tasks such as edge detection, pattern recognition, and object tracking, etc.

Denote by z the observed image (known) and u the desired true image (unknown), both defined

on a bounded convex region Ω of Rd (for simplicity we will assume Ω to be a square in R
2).

Consider the common degradation model

z = Ku+ η, (1.1)

where η is an additive noise term (also unknown) and K is a known linear operator representing

the blur (usually a convolution), the image is only corrupted by noise when K is the identity.

We wish to reconstruct the true image u from the observed image z.
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There are many different modeling methods proposed to obtain an estimate of u [28]. One

effective and well-known method is the total variation-based method by Rudin, Osher and

Fatemi [26], consisting of solving the following constrained optimization problem:

min
u

∫

Ω

|∇u|dxdy subject to ‖Ku− z‖2 = σ2. (1.2)

Here | · | is the Euclidean norm in R
2, ‖ · ‖ is the norm in L2(Ω) and σ is the standard deviation

of the noise η. This problem is naturally linked to the following unconstrained problem – the

minimization of the total variation penalized least squares functional (see [8, 26, 28]):

α

∫

Ω

|∇u|dxdy +
1

2
‖Ku− z‖2, (1.3)

where α is a positive parameter controlling the trade-off between goodness of fit-to-the-data

and variability in u. The main advantage of the total variation restoration models is that their

solutions preserve edges very well. But other models without the TV are also effective [5,13,14].

In spite of the fact that the variational problem (1.3) is convex, the computation is not easy

since the total variation semi-norm is a nonlinear nondifferentiable functional. To overcome

the nondifferentiation difficulty, one approach is the dual methods (see [3, 7]) and the other

is a split Bregman iteration [33]. However, the commonly used technique is to approximate

the term |∇u| by
√

|∇u|2 + β, where β is a small positive parameter, and the unconstrained

minimization problem (1.3) becomes

min
u

{

f(u) = α

∫

Ω

√

|∇u|2 + βdxdy +
1

2
‖Ku− z‖2

}

. (1.4)

It is shown in [1] that the solution of (1.4) converges to the solution of (1.3) when β → 0. The

corresponding Euler-Lagrange partial differential equation (PDE) for (1.4) is

g(u) = −α∇ ·
(

∇u
√

|∇u|2 + β

)

+K∗(Ku− z) = 0, (x, y) ∈ Ω, (1.5)

with homogeneous Neumann boundary condition ∂u/∂~n = 0, (x, y) ∈ ∂Ω. Here ∇· is the

divergence operator, K∗ is the adjoint operator of K with respect to the L
2 inner product, ∂Ω

is the boundary of Ω and ~n is the normal vector of ∂Ω. It should be remarked that even for

moderately small β, the Newton method does not converge with the common starting iterate

u = z; therefore, one cannot find any use of Newton type methods for this primal equation in

the literature.

Before we present a method to help the Newton method, we briefly review four categories

of methods for solving (1.5).

1) Gradient descent methods [24, 26]. As used in Rudin et al. [26], instead of the elliptic

PDE, a parabolic PDE with time as an evolution parameter is solved by the gradient descent

method

ut = N (u) ≡ α∇ ·
( ∇u
√

|∇u|2 + β

)

−K∗(Ku− z), u(x, y, 0) = z. (1.6)

An accelerated version is ut = |∇u|N (u) as first used by [24]. This method is preferred in

many situations for its simplicity, user-independent choice of regularize parameter and fast
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initial convergence, but it converges very slowly to its steady state since the parabolic term

is nearly singular for small gradients. Yet an even faster version is via the additive operator

splitting idea [21, 32] for (1.6) which is used on a semi-implicit time-marching scheme as

widely used.

2) Fixed-point methods [14, 29]. The idea is to solve the Euler-Lagrange equation (1.5)

directly by linearizing the highly nonlinear and ill-conditioned term∇·(∇u(
√

|∇u|2 + β)−1).

In details, solve

−α∇ ·
(

∇uk+1

√

|∇uk|2 + β

)

+K∗(Kuk+1 − z) = 0, k = 0, 1, · · · .

Here u0 = z, and at each iteration one must solve a linear diffusion equation, whose dif-

fusivity depends on the previous iterate uk. Such a linear equation is often solved by a

preconditioned conjugate gradient method [28] or a multigrid method, especially the robust

algebraic multigrid methods. The fixed point method is also used in defining a smoother for

a nonlinear multigrid method [27].

3) Interior-point primal-dual method [11]. Instead of solving (1.5) directly for the primal

variable u, the main idea is to introduce a new (dual) variable w = ∇u(
√

|∇u|2 + β)−1 and

replace (1.5) by the following system of nonlinear partial differential equations

− α∇ · w +K∗(Ku− z) = 0,

w
√

|∇u|2 + β −∇u = 0.

Practically, the system can be effectively solved by a Newton method but the smaller the β

is, the higher the quality of the reconstruction of image edges and the slower the convergence

of the Newton iterations (and the inner iterations) becomes [11, 16, 28].

4) The dual methods [7]. Instead of solving (1.5) directly for the primal variable u, we

first reformulate it into an equation involving the dual variable only [7]. Then the gradient

descent methods can be used for the resulting dual equation which can be shown to be

globally convergent [7]. Further the dual equation can be solved by a non-smooth Newton

method [23] or other iterative methods [10].

Returning to the main theme of the paper, we note that the Newton method does not work

satisfactorily in the sense that its domain of convergence is very small which requires an initial

guess (better than z and) close to the true solution. Chan, Zhou and Chan [15] proposed a

continuation procedure for Newton method on the parameters α and β to improve the initial

guess in each continuation. After selecting suitable large values of α1 and β1, this procedure

consists of two steps: fix β1 and gradually increase α1 to the given value α and fix α and

decrease β1 towards β step by step. Unfortunately it is not easy to find an automatic way

for the continuation to be robust. Independent of the above work, Melara et al. [22] used

the Newton method combined with a globalization technique (i.e. line search for augmented

Lagrangian method) for this TV denoising problem; it turned out the parameter homopoty for

gradually decreasing β by a fixed ratio is almost identical to Chan, Zhou and Chan [15].

As a globally convergent method, the homotopy method has versatility and robustness, and

it has become an important tool for solving nonlinear problems, see [2,12,17,18,20,31]. In this

paper, we propose a more robust and efficient homotopy method to solve (1.5) directly. The
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basic homotopy algorithm to solve this problem is to construct a continuous map H(u, t) which

deforms a simple function g0(u) = H(u, 0) to the given function g(u) = H(u, 1) as t varies from

0 to 1. The continuous map is defined by

H(u, t) = −α∇ ·
(

t∇u
√

t2|∇u|2 + (1− t)2

)

+K∗(Ku− z) = 0. (1.7)

The equation is constructed based on gradually decreasing the smooth parameter β(t) = (1 −
t)2/t2, t ∈ (0, 1]. Of course there exist many other choices of H(u, t), e.g., the following is one

possibility

H(u, t) = −α∇ ·
(

∇u
√

|∇u|2 + (1− t)β0 + tβ

)

+K∗(Ku− z) = 0.

to advance t from 0 to the desirable 1. Here β0 is a suitable large value of smooth parameter.

The homotopy method avoids choosing β by some heuristics, and an efficient curve tracking

idea is used.

Another recent method based on Bregman iterations [25] optimizes the regularization pa-

rameter α; if further combined with our homotopy algorithm, the overall method will have clear

advantages but we have not explored this line of work.

The rest of this paper is organized as follows. In Section 2 we first introduce the standard

finite difference scheme for our homotopy equation and then describe the details of how to

track the solution curve. In Section 3 we present three new homotopy methods. Finally, we

will give the numerical results of the implementation of the various algorithms on several tests

in Section 4.

2. The Basic Homotopy Method

It is well-known the basic idea of homotopy algorithm is to construct a continuous map

H(u, t) which deforms a simple function H(u, 0) to the given function H(u, 1) as t varies from

0 to 1.

2.1. The discretization scheme

For the sake of simplicity, we assume that the image domain Ω is a square [14] such that

the mesh size ∆x = ∆y = 1 when defining a regular n× n grid of pixels, indexed as (i, j), for

i = 1, · · · , n, j = 1, · · · , n. Let ui,j represents the value of the function u at pixel (i, j). We

define the discrete homotopy equation (1.7) by the standard finite difference as follows:

[H(u, t)]i,j = −α∇ ·
(

t(∇u)i,j
√

t2|(∇u)i,j |2 + (1 − t)2

)

+ (K∗(Ku− z))i,j , 1 ≤ i, j ≤ n, (2.1)

where the discrete gradient operator at each pixel (i, j) is defined by

(∇u)i,j =
(

(ux)i,j , (uy)i,j

)

with

(ux)i,j =

{

ui+1,j − ui,j , if i < n,

0, if i = n,
(uy)i,j =

{

ui,j+1 − ui,j , if j < n,

0, if j = n,
(2.2)
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and the discrete divergence operator is

(∇ · p)i,j =











p1i,j − p1i−1,j, if 1 < i < n,

p1i,j , if i = 1,

−p1i−1,j , if i = n,

+











p2i,j − p2i,j−1, if 1 < j < n,

p2i,j , if j = 1,

−p2i,j−1, if j = n.

(2.3)

Once we stack the grid functions u along rows of Ω into vector

u = (u1,1, · · · , un,1, u1,2, · · · , un,2, · · · , u1,n, · · · , un,n)
T ,

as commonly done, then u ∈ R
N, where N= n2. Similar to u, z and H(u, t) are vectors for z

and H(u, t), respectively. The homotopy equation (1.7) can be written in the form H(u, t) = 0.

2.2. The Basic Homotopy Theory

We shall first review a general homotopy theory and then show that the theory applies to

the above proposed map H(u, t).

Proposition 2.1. Suppose that

H : RN × [0, 1) → R
N

satisfies these conditions:

(a) H(u, t) is a C2 map,

(b) the N× (N + 1) Jacobian matrix DH has rank N on the set

H−1(0) = {(u, t)| u ∈ R
N, 0 ≤ t < 1, H(u, t) = 0},

(c) H(u, 0) = g0(u) = 0 has a unique solution u0,

(d) H(u, 1) = g(u),

(e) H−1(0) is bounded.

Then there is a zero curve Γ of H(u, t), emanating from the easily obtained solution of (u0, 0)

and reaching a zero ū of g(u) at t = 1.

Lemma 2.1. The above homotopy function H(u, t) from (1.7) satisfies the conditions of Propo-

sition 2.1, so the same results of Proposition 2.1 hold for H = H(u, t).

Proof. First note that H(u, t) is smooth, so (a) is satisfied.

Assume t ∈ [0, 1) is any given constant. If we can prove that the Jacobian matrix of H(u, t)

(i.e., the first N columns of the DH) is a symmetric positive definite matrix, then H(u, t)

satisfies (b), (c) and (e).

Define

L(u)i,j = −α∇ ·
(

t(∇u)i,j
√

t2|(∇u)i,j |2 + (1− t)2

)

, 1 ≤ i, j ≤ n.

We can show that the Jacobian matrix of L(u) is symmetric positive semidefinite. Since K∗K

is symmetric positive semidefinite, the Jacobian matrix of L(u) + K∗K can be shown to be

symmetric positive definite; see [30]. Therefore, (b), (c) and (e) hold. Then there exists a

zero curve Γ of H(u, 0), starting from the solution of H(u, 0) = 0 and reaching the solution of

H(u, 1) = 0. 2
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2.3. Curve tracking

The essence of a homotopy algorithm is to track the zero curve Γ until the solution ofH(u, 1)

is obtained, therefore, curve tracking becomes the main focus of the problem-solving effort. A

typical curve tracking method consists of a succession of prediction phases and correction phases.

2.3.1. Prediction phase

Getting the predictor point is the main work for prediction phase. The approximation step is

along the curve in the general direction of the tangent of the curve. The technology of numerical

solution of initial value problem provides motivation for generating predictor steps. It consists

of the following two steps:

1) find a predictor direction;

2) estimate the predictor steplength.

As the initial guess of the correction, the predictor point will directly affect the correction. How

to choose the predictor point is one of the key factors for the speed of homotopy method.

Here we consider two strategies to get the predictor direction. Assume h is an estimate of

the optimal step to take along Γ.

Strategy I is the naive choice of

(u(t), t) = (u(t1), t1 + h), (2.4)

where (u(t1), t1) is the previous corrector point.

Strategy II is by the Lagrange interpolation formula.

Take the Lagrange quadratic interpolation as an example. A predictor point is obtained by

three known points on the solution curve Γ. Assume the three points are P (1) = (u(t1), t1),

P (2) = (u(t2), t2), and P (3) = (u(t3), t3). The predictor point is

(u(t), t) = p(t3 + h),

where p(t) is the Lagrange quadratic interpolating (u(t), t) at t1, t2, and t3. Precisely,

p(t1) = (u(t1), t1), p(t2) = (u(t2), t2), p(t3) = (u(t3), t3),

and each component of p(t) is a polynomial in t as follows

p(t) =

(

(t− t2)(t− t3)

(t1 − t2)(t1 − t3)
u(t1) +

(t− t1)(t− t3)

(t2 − t1)(t2 − t3)
u(t2) +

(t− t1)(t− t2)

(t3 − t1)(t3 − t2)
u(t3), t

)

. (2.5)

By a similar procedure we can obtain the Lagrange linear interpolation which uses two points

on the curve and the Lagrange cubic interpolation which use four points on the curve.

For the predictor steplength, we first estimate h by h = θ(1 − t) ( θ ∈ (0, 1)), and we

further adjust h from tuning θ according to the performance of the corrector procedure as done

below in Algorithms 2–3: When a corrector step terminates within prescribed steps of it1, θ

is considered too small for the next predictor and is increased, when the iterations terminate

over some it2 > it1 and converge, θ is considered too large and will be decreased, while if the

iterations diverge, the predictor-corrector step is abandoned and then is restarted starting with

a smaller θ.
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2.3.2. Correction phase

As we know, the prediction phases and the correction phases mutually affect each other. Af-

ter a predictor point (u0, t0) has been determined, a correction phase is performed to bring

the predicted point back to the curve by applying one or more iterative steps of an iterative

procedure (typically of Newton or gradient type) for solving H(u, t) = 0 at t = t0.

Specifically, the Euler-Lagrange equation H(u, t0) is solved by

uk+1 = uk −A(uk)−1H(uk, t0), k = 0, 1, · · · , (2.6)

where A(u) is a linear operator for H(u, t0). As discussed in Section 1, apart from the Newton

method, there are four kinds of methods for solving the TV model H(u, t) = 0.

If the predictor point lies in its quadratic convergent domain, the Newton method has a local

quadratic convergence, implying that the correction will be finished usually within 3 steps, so

indeed we set it1 = 3 in the homotopy methods below. However, such a domain of convergence

is small, in order to ensure that u(t) lies in the quadratic convergent domain of H(u, t0) = 0,

the predictor point should approximate to the curve as accurately as it possibly can.

Comparing with the Newton method, the fixed-point method and the primal-dual method

have a larger domain of convergence, so demanding less in approximation accuracy of the

predictor point. Below we shall also use such methods as correctors in a comparison.

3. Homotopy Methods

In this section we first introduce the Chan, Zhou and Chan’s continuation method [15], and

then describe the homotopy method of Melara et al. [22] before we present three new homotopy

methods. These homotopy methods differ from each other only in the choice of algorithms for

the prediction phase and the corrector phase. Our aim to construct the homotopy equation is

mainly to get a fast and highly accurate solution of the Euler-Lagrange equation (1.5) with the

desirable (small) smooth parameter (1− t)2/t2 by tracking the zero curve Γ efficiently. During

the curve tracking process, a reliable predictor point (u(t), t) for the correction is obtained from

previous corrections.

Based on the curve tracking framework, different choice of prediction schemes and correction

methods, we get several variants of a homotopy method. We now introduce these methods in

details, defining H(u, t0) in each case and the numerical schemes.

3.1. CZC method

For ease of comparisons, we shall denote by CZC the Chan, Zhou and Chan’s continuation

method (see [15]) for solving equation (1.5). The Newton method for (1.5) is the following

[

− α∇ ·
(

1
√

|∇uk|2 + β

(

I2 −
∇uk(∇uk)T

|∇uk|2 + β

)

∇
)

+ 1

]

δuk = −g(uk), (3.1)

where uk is the kth iterate and δuk = uk+1 − uk. The algorithm proceeds as follows:
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Algorithm 3.1 (CZC method – Chan, Zhou and Chan [15])

Step 1. Set k = 1 and choose a suitable large α1 and β1. Use the initial guess u1,1 = z.

Step 2. While αk ≤ α, do

(a) Use the Newton method, with uk,1 as the initial guess (i.e., solve (3.1) with β1).

Denote the solution as uk+1,1.

(b) Choose αk+1 > αk by αk+1 = γαk.

(c) Set k = k + 1.

Step 3. Let the final solution of Step 2 be denoted by u∗,1. Set l = 1.

Step 4. While βl ≥ β, do

(a) Use the Newton method, with u∗,l as the initial guess (i.e., solve (3.1) with βl).

Denote the solution as u∗,l+1.

(b) Choose βl+1 < βl by βl+1 = τβl.

(c) Set l = l + 1.

Step 5. The final solution of Step 4, denoted by u∗,∗ will be the solution to the Euler-

Lagrange equation (1.5) with the prescribed parameters α and β.

As no curve tracking is used in [15], their Newton corrector steps for parameters α and β

using the simplistic αk = γαk−1 and βk = τβk−1 till αk and βk approximate to the prescribed

parameters at which they want to solve (1.5), where the initial α1 and β1 are chosen first, γ is

an incremental ratio – we have tested several choices of γ = 1.2, 2, 4, 5, 10 and found that γ = 2

is usually a good choice, and τ is a decremental ratio whose choice influenced by the noisy level

and the size of β, in [15] the authors choose τ = 0.5 as the first step and then τ = 0.2 for their

tests when β = 0.1 , but this is not always a good choice for other cases. Theoretically their

method only works if the domain of convergence depends linearly on the parameters (which is

hardly the case for a nonlinear problem).

3.2. Melara’s method

Melara et al. [22] proposed a similar method to CZC which just reduced β by a fixed ratio.

Since they used a Newton method combined with a line search step in an augmented Lagrangian

method, our implementation below with a linear search step for the standard TV model is only

approximate to their work.

Recall from (1.4) the TV energy functional is f(u) = α
∫

Ω

√

|∇u|2 + βdxdy + 1
2‖Ku− z‖2,

and each Newton step is as given by (3.1).

To ensure that uk+1 = uk+ δuk is meaningful, the TV energy functional is used. The initial

linesearch parameter s ∈ R is set to s := 1. The value of s is determined based on a sufficient

decrease criterion

f(uk + δuk) < f(uk) + 10−4sg(uk) · δuk. (3.2)

If the steplength s does not meet (3.2), then it is reduced by 1/2, i.e., s := s/2, until (3.2) is

satisfied. Then, reset s := 1 to compute the (k + 1)th iterate by (3.1). Thus the procedure for

Melara’s method is similar to the continuation of β for Algorithm 3.1, namely Step 3 to Step

5, and (1.5) is solved by the Newton method combined with a line search.
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3.3. Method 1

Although the CZC method is quadratically convergent if converging, it has not addressed the

problem of how to find a robust and fully satisfactory selection procedure; Melara’s method is a

variant of the CZC. Methods 1–3 can be considered as new CZC methods for the continuation

of smooth parameter only, with curve tracking to select the smooth parameter adaptively.

As a local quadratic convergence method, the Newton method converges to the solution

with few steps when the initial guess approximates to the solution. Method 1 makes full

use of this property by adjusting the steplength not only according to whether the Newton

method’s success or failure, but also in accordance with the steps of correction. Here the

Newton correction step for (1.7) is

[

K∗K − α∇ ·
(

t
√

t2|∇uk|2 + (1− t)2

(

I2 −
t2∇uk(∇uk)T

t2|∇uk|2 + (1− t)2

)

∇
)]

δuk = −H(uk, t), (3.3)

where I2 ∈ R
2×2 is an identity operator. We discretize the linear operator

K∗K − α∇ ·
(

t
√

t2|∇uk|2 + (1− t)2

(

I2 −
t2∇uk(∇uk)T

t2|∇uk|2 + (1− t)2

)

∇
)

as in §2.1 to get A(uk) in (2.6) by standard finite differences.

The algorithm with Strategy I for the predictor phase is shown below. In the numerical

implementation we terminate the curve tracking when the homotopy parameter t reaches 1/(1+√
β) for a desired β.

Algorithm 3.2 (Method 1) Assume the required β is prescribed.

Step 1. Set θ ∈ (0, 1), h := θ(1−t), t0 := 0, u(t0) := z, arcar := absolute residual tolerance

for tracking Γ, and ansar := absolute residual tolerance for the answer.

Step 2. Set t := t0 + θ(1− t0),

u(t) := u(t0).

If t ≥ 1/(1 +
√
β), then

t = 1/(1 +
√
β), and solve (2.6) to obtain u∗.

If ‖g(u∗)‖ ≤ ansar,

then return (solution has been found).

Else go to Step 3.

Else solve (2.6) to obtain u∗(t) until either

‖H(u∗(t), t)‖ ≤ arcar, and record the iteration count,

or the maxit iterations have been performed.

Step 3. If the iteration (2.6) did not converge yet when maxit steps are reached, then

reduce θ by θ := θ/2.

If θ is unreasonably small, then

return with an error flag.

Else return to Step 2.
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Else set (u(t0), t0) := (u∗(t), t).

If the iteration count is less than it1, then

increase θ by θ := min(1.2θ, 0.9).

If the iteration count is more than it2, then

reduce θ slightly by θ := θ/1.2.

Return to Step 2.

In the above algorithm maxit denotes the number of maximum correction iterations pre-

scribed to guarantee the predictor point is a reasonable approximation, and we estimate the

steplength h by h = θ(1 − t) with θ ∈ (0, 1). It is well known that the Newton method can

reduce a nonlinear residual by the factor of 10−6 within 3 steps when the initial guess lies in

its quadratic convergence domain, so we can set it1 = 3 and it2 = 5 in this algorithm. With

these choices, we hope to accelerate the curve tracking using the least number of correction

iterations.

3.4. Method 2

Method 2 below is our new and recommended restoration method which combines the

local quadratic convergence of the Newton method with the more efficient predictor method of

Strategy II, i.e., the Lagrange interpolation. The following table summarizes three Lagrange

interpolation methods that we shall consider in our homotopy method:

Method Interpolation type Correction by

Method 2a Lagrange linear interpolation (3.3)

Method 2b Lagrange quadratic interpolation (3.3)

Method 2c Lagrange cubic interpolation (3.3)

As we know, the Newton method can arrive at quadratical convergence when the initial

guess is close to the solution. The predictor step and corrector steps mutually influence each

other during the curve tracking. Generally speaking, the correction methods converge quickly

when the predictor point is close to the corrector point. In order for the correction to succeed

in few steps, we should ensure the predictor point approximates well to a corrector point. Our

previous use of one correction point to get the next predictor point in Algorithm 2 does not

make full use of the geometric property of the curve, which may not be good for prediction.

While a Lagrange interpolation using more than one point on the curve Γ, we hope to follow

the geometric property of Γ more accurately.

In summary, taking the Lagrange quadratic interpolation as an example, the new algorithm

is:

Algorithm 3.3 (Method 2) Assume the required β is prescribed.

Step 1. Set θ ∈ (0, 1), h := θ(1 − t), t0 := 0, u(t0) := z, t1 := θ, and t2 := 2θ − θ2.

arcar := absolute residual tolerance for tracking Γ, ansar := absolute residual tolerance for

the answer. Compute u(t1), using (2.6) with u(t0), and then compute u(t2) taking u(t1) as

the initial guess.
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Step 2. Set t := t2 + θ(1 − t2),

Step 2 is similar to Algorithm 3.2, but the predictor point is obtained by Lagrange interpo-

lation.

Step 3. This step is the same as Step 3 of Algorithm 3.2, and (u(t0), t0) := (u(t1), t1),

(u(t1), t1) := (u(t2), t2), (u(t2), t2) := (u∗(t), t).

3.5. Method 3

Method 3 below, similar to Method 2, uses the same prediction scheme, but they differ in

the correction steps, i.e., they can share the same algorithm with different choices of A(u) in

(2.6). Method 3 uses a fixed-point method as its correction, and the corrector equation is thus
[

K∗K − α∇ ·
(

t0
√

t20|∇uk|2 + (1− t0)2
∇
)]

δuk = −H(uk, t0). (3.4)

This application, though as a minor departure from our main theme of improving the Newton

methods, aims to illustrate the usefulness of a homotopy method. As usual [28], we use the

standard finite difference discrete the linear operator

K∗K − α∇ ·
(

t0
√

t20|∇uk|2 + (1− t0)2
∇
)

(3.5)

to get A(uk) in (2.6). It is well known that the method is robust and have a large domain

of convergence, but only linearly convergent. Moreover, the iterative methods slow down for

small β so applying a homotopy idea is also a natural consideration. As our aim is not to trace

the solution curve accurately but to improve the initial guess for the final equation, we can set

it1 = 8, it2 = 10 and ansar = 10−4 when we use the fixed-point method as the correction

method.

4. Numerical Experiments and Discussions

In this section we test our restoration algorithms on several images of resolutions 128× 128,

and 256 × 256 pixels. The quality of the restored images will be measured by signal to noise

ratio (SNR) and peak signal to noise ratio (PSNR) which are defined as follows:

SNR = 10 log10

n
∑

i=1

n
∑

j=1

u2
i,j

n
∑

i=1

n
∑

j=1

(ui,j − ũi,j)2
, PSNR = 10 log10

2552

1
n2

n
∑

i=1

n
∑

j=1

(ui,j − ũi,j)2
,

where u, and ũ are the original image, and the restored image. In all tests we use the ratio

notation

AS = total Newton steps / total continuation steps

to denote the accumulated number of Newton steps (indicating the computational complex-

ity) over the total number of continuation steps (indicating the level of nonlinearity); if the

denominator is 1, it means there is no continuation used.

Comparisons of Methods 1–2 with Newton, CZC and Melara’s method. In our

numerical experiment we first compare the convergence of the Newton method, the previous
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Fig. 4.1. A relative residual history by CZC method, Method 1, and Methods 2a-2c with β = 10−10

(left) and β = 10−16 (right).

CZC method (Algorithm 3.1) and the Melara’s method with the above described new homotopy

Method 1 and Method 2. The test image is a 128 × 128 “triangle” image contaminated with

random noise, as shown in Fig. 4.3. We take the noisy image as the initial guess and α = 20.

The stopping criterion is to make the reduction of relative residual by a factor of 10−5. Here we

take θ = 0.01 for Method 1 and Methods 2a-2c, and γ = 2, τ = 0.5 for the CZC method. The

summary of computational results for these methods is listed in Table 4.1. Clearly all homotopy

type methods converge while the Newton method does not converge at all as expected. In

particular, our new Method 2 based algorithm is about 3–4 times more efficient than the CZC

method and for this test, our Method 1 is still competitive (to CZC and Melara) but less efficient

than our Method 2.

For a graphical illustration, in Fig. 4.1, we plot the relative residuals’ history of this ex-

periment, and we present the changes of homotopy parameter t in Fig. 4.2 for these methods.

Comparing with the CZC method and Method 1, Methods 2a–2c take less cpu time and are in

general robust; among them, Method 2b will be use and recommended in later tests.
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Fig. 4.2. A description for the change of homotopy parameter t by Method 1, and Methods 2a-2c with

β = 10−10 (left) and β = 10−16 (right).
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Table 4.1: Comparison of the Newton method, CZC method, Melara’s method, Method 1, and Methods

2a-2c with different β.

method
β = 10−6 β = 10−8 β = 10−10

AS PCG time AS PCG time AS PCG time

Newton ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

CZC 119/33 19005 57 153/40 36000 86 224/46 71500 203

Melara’s 216/8 48466 120 284/10 82466 201 563/12 222466 567

Method 1 115/33 17784 54 142/39 31254 81 186/47 54257 137

Method 2a 83/34 11344 35 101/38 20286 59 141/46 41289 113

Method 2b 77/33 9644 29 90/36 16144 51 119/43 31144 82

Method 2c 76/33 9128 27 89/36 15628 50 117/42 30628 80

method
β = 10−12 β = 10−14 β = 10−16

AS PCG time AS PCG time AS PCG time

Newton ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

CZC 336/53 127500 361 557/60 238486 676 750/66 336000 952

Melara’s 375966 869/14 958 1469/16 677466 1767 2069/18 978966 2597

Method 1 268/66 95757 246 372/91 148257 381 489/118 207257 509

Method 2a 176/57 58789 154 220/69 82289 206 245/77 95789 248

Method 2b 144/49 43644 132 169/56 57144 153 183/61 64644 167

Method 2c 136/48 40128 127 158/55 52128 147 188/61 69128 184
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Fig. 4.3. Original “triangle” image (above left), noisy image (above right) and image recovered by

Method 2b with β = 10−10 (bottom).
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Table 4.2: Comparison between the primal-dual method (PD) and Method 2b with different β.

method
β = 10−8 β = 10−9 β = 10−10

AS PCG time AS PCG time AS PCG time

PD 28/1 13266 102 56/1 27266 205 148/1 73266 558

Method 2b 90/36 16144 117 106/39 24644 171 119/43 31144 224

Table 4.3: Comparison between the fixed-point method (FP) and method 3 with different β.

method
β = 10−8 β = 10−9 β = 10−10

AS PCG time AS PCG time AS PCG time

FP 1324/1 603438 3661 1578/1 788088 4677 1937/1 967608 5852

Method 3 812/86 165335 1042 895/95 197335 1256 1042/104 265066 1721

Table 4.4: The restoration results of FP, PD, and Method 2b with different α.

method
α = 1 α = 0.1 α = 0.01

AS PCG PSNR AS PCG PSNR AS PCG PSNR

FP 500/1 49500 23.80 500/1 49500 33.70 247/1 24453 44.02

PD 500/1 49500 23.79 500/1 49500 33.71 271/1 26829 44.02

Method 2b 212/53 20774 24.16 138/37 14454 33.75 85/35 8811 44.02

Comparisons of Method 2b and Method 3 with old non-homotopy methods.

Next we compare the primal-dual method (PD) with Method 2b, and the fixed-point method

(FP) with Method 3 with β = 10−8, 10−9, 10−10, respectively. We use the same test image,

the same α and the same stopping criterion as the above experiment. Table 4.2 presents the

comparative results between the primal-dual method (PD) and Method 2b. Although the

primal-dual method is slightly faster than Method 2b when β = 10−8, the results are the other

way round when β becomes even smaller.

Table 4.3 shows the comparison between the fixed-point iteration (FP) and Method 3. It

is easy to draw the conclusion that Method 3 accelerates the convergence of the fixed-point

method as much as three times, although the latter is known as a converging method.
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Fig. 4.4. The original “UoL” image (left) and image degraded by Gaussian blur with PSNR≈13.70

(right).
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Fig. 4.5. Images restored by the fixed-point method (above left), primal-dual method (above right),

and Method 2b (bottom) with α = 1, β = 10−8.

Table 4.5: The restoration results of FP, PD, and Method 2b on 128× 128 “UoL” image contaminated

with noise and blur.

method AS PCG relative residual time PSNR

FP 100/1 9900 2.64e-2 478 16.1634

PD 100/1 9900 3.6e-2 495 16.1738

FP 300/1 29700 2.07e-2 1426 16.3961

PD 300/1 29700 2.8e-2 1484 16.3945

FP 500/1 49500 2.26e-3 2363 16.5360

PD 500/1 49500 3.1e-3 2461 16.5307

Method 2b 207/57 21087 4.8e-6 996 16.7007

Table 4.6: The comparison between Fast-TV method and Method 2b. The maximum number of

iterations is set to be 200 for the Fast-TV method.

method
“Uol” (128) “cameraman” (256)

PSNR time PSNR time

Fast-TV 16.4332 290 27.1082 1868

Method 2b (β = 10−1) 16.686 230 27.6596 956

Method 2b (β = 10−6) 16.7007 795 27.6507 1987

Comparisons of Method 2b with FP, PD and the splitting method for image

deblurring. The test image is a 128× 128 “UoL” image which is applied with Gaussian blur

with PSNR≈13.70 as shown in Fig. 4.4. We consider three choices of α = 1, 0.1, 0.01 as the
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Fig. 4.6. Original “cameraman” image (left) and image degraded by Gaussian blur and Gaussian noise

with PSNR=20.54 (right).
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Fig. 4.7. Images restored by the Fast-TV method (left) and Method 2b with β = 10−6(right).
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Fig. 4.8. Original images ( left: “Circbox” and right: “Aircraft”)

regularization parameter and β = 10−8; Table 4.4 shows the computational results of these four

methods. The conclusion one can draw from this table is that Method 2b not only gets a better

restored image, but also requires less outer iterations and inner iterations. Fig. 4.5 displays

images restored using these three methods with α = 1.

Next we test an image which is contaminated with both Gaussian noise and Gaussian blur.

First, we compare the fixed-point method and the primal-dual method (PD) with Method 2b

on the above “UoL” image (with the initial PSNR = 10.26 due to noise added to the right plot

of Fig. 4.4). We take α = 1 and β = 10−8. Table 4.5 reports the numerical results of these three

algorithms. It is not difficult to see Method 2b is the most robust and the fastest algorithm

of three for this denoising and deblurring problem. Second, we compare Method 2b with the
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Fig. 4.9. Noisy “Circbox” image with SNR≈5 (left) and image recovered byMethod 2b with AS = 92/36

(right).
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Fig. 4.10. Noisy “Aircraft” image with SNR≈5 (left) and image recovered by Method 2b with AS =

105/40 (right).
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Fig. 4.11. Noisy “Circbox” image with SNR≈1 (left) and image recovered by Method 2b with AS =

121/44 (right).

fast total variation minimization (Fast-TV) method from [19]; we take the parameter α1 = 0.05

for “UoL” and α1 = 0.02 for “cameraman” as the suitable choices, and take the parameter

α2 = α = 1 for “UoL” and α2 = 0.1 for “cameraman”. The computational results are shown in

Table 4.6. According to Table 4.6 and Fig. 4.7, we find that Method 2b attains slightly better

quality of image restorations than the Fast-TV method in comparable complexity. Of course,

the Newton type methods are known to have no convergence for this type of problems so the

fact that our Method 2b based on homotopy and the Newton method can reach comparable

efficiency is already remarkable. It remains to explore the option of accelerating the Fast-TV

method by a homotopy method.
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Further tests of Method 2b for images with heavy noise. Finally we test Method 2b

on two images as shown in Fig. 4.8. We add heavy noise to these images, as shown in Figs. 4.9–

4.12. In our tests we take the noisy image as the initial guess as before, β = 10−8 in these cases,

α = 20 for “Circbox” image and 40 for “Aircraft” image for the noise level SNR ≈ 5, and 40

for “Circbox” image and 50 for “Aircraft” image for the level SNR ≈ 1. It is easy to see that

Method 2b can remove the noise efficiently even for images with large noisy-to-signal ratio.
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Fig. 4.12. Noisy “Aircraft” image with SNR≈1 (left) and image recovered by Method 2b with AS =

110/40 (right).

5. Conclusions

The primal TV image restoration model can be solved by many effective methods. But

none of them is of a Newton type, if not using a dual formulation, because of no convergence.

This paper proposed to use a homotopy method with curve tracking to choose the regulariz-

ing parameter β adaptively. The resulting method turns out to be quite robust to drive the

Newton method (as a corrector) to convergence for a range of test images. When used for the

converging fixed-point method and the primal-dual method, the proposed homotopy algorithm

also accelerates on these methods. Numerical tests for deblurring problems and comparisons

to the splitting method are also presented. For high order (non-TV) image restoration mod-

els [5, 6, 13, 14, 34] it will be of interest to see how to generalize our homotopy method which

will be considered in our future work.
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