
Journal of Computational Mathematics

Vol.29, No.3, 2011, 287–304.

http://www.global-sci.org/jcm

doi:10.4208/jcm.1009-m3303

A FAST HIGH ORDER METHOD FOR ELECTROMAGNETIC
SCATTERING BY LARGE OPEN CAVITIES*

Meiling Zhao

School of Mathematics and System Science, Beijing University of Aeronautics & Astronautics, Beijing

100191, China

Email: meilingzhaocn@yahoo.com

Zhonghua Qiao∗

Institute for Computational Mathematics & Department of Mathematics, Hong Kong Baptist

University, Kowloon, Hong Kong

Email: zqiao@hkbu.edu.hk

Tao Tang

Department of Mathematics, Hong Kong Baptist University, Kowloon, Hong Kong

Email: ttang@hkbu.edu.hk

Abstract

In this paper, the electromagnetic scattering from a rectangular large open cavity em-

bedded in an infinite ground plane is studied. By introducing a nonlocal artificial boundary

condition, the scattering problem from the open cavity is reduced to a bounded domain

problem. A compact fourth order finite difference scheme is then proposed to discrete the

cavity scattering model in the rectangular domain, and a special treatment is enforced to

approximate the boundary condition, which makes truncation errors reach O(h4) in the

whole computational domain. A fast algorithm, exploiting the discrete Fourier transfor-

mation in the horizontal and a Gaussian elimination in the vertical direction, is employed,

which reduces the discrete system to a much smaller interface system. An effective pre-

conditioner is presented for the BICGstab iterative solver to solve this interface system.

Numerical results demonstrate the remarkable accuracy and efficiency of the proposed

method. In particular, it can be used to solve the cavity model for the large wave number

up to 600π.

Mathematics subject classification: 65N06, 78M20.

Key words: Electromagnetic cavity, Compact finite difference scheme, FFT, Precondition-

ing.

1. Introduction

The scattering properties of open cavities are of high interest to the engineering community,

with a number of applications including the design of jet engine inlet ducts and cavity-backed

antenna for military and civil use. In this paper we mainly concern with the electromagnetic

scattering from a two-dimensional large open cavity as shown in Fig. 1.1. The ground plane

and the walls of the open cavity are assumed as perfect electric conductors (PEC), and the

interior of the open cavity is filled with non-magnetic materials which may be inhomogeneous.

The half space above the ground plane is filled with a homogenous and isotropic medium with

its permittivity ε0 and permeability µ0. In this setting, the electromagnetic scattering by the
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Fig. 1.1. The geometry of the cavity.

cavity is governed by the Helmholtz equation along with Sommerfeld’s radiation conditions

imposed at infinity. A variety of numerical methods, including the method of moments, finite

difference, finite element, boundary element method, and hybrid methods [3, 7, 9, 10], have

been developed to characterize the scattering from cavities. Some mathematical analysis and

numerical treatments on the open cavities can be found in [1, 2, 5].

However, the problem will be challenging when the wave number k is large, or the cavity

becomes large compared to the wavelength of the fields, more precisely large ka, where a

denotes the size of the computational domain, because of the highly oscillatory nature of the

fields. For a large wave number, the phase error (pollution) of the computed solution obtained

with low order discretization is large unless fine meshes are used per wavelength. See [22] for

detailed information. A fine mesh would lead to a large system of equations which may be

computationally prohibitive. For instance, a large cavity, 1m ×1m, with a centimeter incident

wave, this condition means when choosing mesh density as 1/20 ∼ 1/40 of the wavelength, it

will produce 108 unknowns in the discrete linear systems of the two-dimensional case. Many

numerical approaches have been proposed to reduce the phase error. For example, the high-

order finite element method was proposed in [7]; the h-version and h-p-version finite element

methods were proposed in [23, 24]. In [11], a standard bilinear finite element together with a

modified quadrature rule was used, which led to fourth order phase accuracy on orthogonal

uniform meshes. The high order spectral method and compact high order finite difference

method have been presented to solve the Helmholtz equation in [12,13,16–18,25]. In [8], a fully

high-order finite element with curvilinear tetrahedral elements was developed to simulate the

scattering by cavities. High order methods are attractive for solving the Helmholtz problem

with the large wave number since they can offer relative higher accurate solution by utilizing

fewer mesh points and spending less computational costs than the low order approaches.

For the cavity electromagnetic scattering problem, the accurate computation for the radar

cross section (RCS) is of particular importance. Bao and Sun proposed a fast algorithm in [3]

for solving the electromagnetic scattering from a rectangular cavity. Using the discrete Fourier

transform in the horizontal direction and a Gaussian elimination in the vertical direction, the

approach reduces the global system in the entire cavity to an interface linear system on the top

line of the cavity with computational complexity proportional to the number of the unknowns

by appropriate iterative methods in the source free case. This algorithm was further improved

in [14].

In this work, we propose a fast high order finite difference method for the scattering of
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electromagnetic plane waves by a two-dimensional (2-D) rectangular cavity in the infinite ground

plane. According to the fact that a straightforward change of coordinates yields the equivalence

of the large wave number and large cavity problems in current context, we emphasize the case

in the large wave number in the discussion. In the cavity domain, the compact four order finite

difference scheme is used for the discretization of the equation, and at the aperture, a fourth

order approximation is also designed by a special technique. Following the work in [3,14], a fast

algorithm, utilizing the discrete Fourier transform in the horizontal direction and the Gaussian

elimination in the vertical direction, is presented to solve the resulting discrete system. An

interface linear system is formed by reducing the global system. For relatively large wave

numbers, the reduced interface linear system may be ill-conditioned. So we present an effective

preconditioner for the BICGstab iterative solver, which further increases the performance and

capability of our high order method. Numerical experiments are carried out to verify the

efficiency of the presented high order method.

The rest of the paper is organized as follows. In the next section, the scattering model

from open cavity is stated and further is reduced to a bounded domain problem. In Section 3,

the fast high order method is presented. Numerical experiments are presented to illustrate the

competitive behavior of the method in Section 4. The paper ends with some conclusions in the

last section.

2. Two-Dimensional Open Cavity Model

We consider the plane wave scattering problem by a open cavity embedded in an infinite

ground plane as in Fig. 1.1. The ground plane and cavity wall are perfect electric conductors

(PEC). Assume that the medium and material is invariant in the z-direction. Throughout

the paper, the media are assumed to be nonmagnetic, having relative magnetic permeability

µr = 1. The interior of the cavity may be filled with inhomogeneous materials having relative

electric permittivity εr(x, y). We are interested in the scattering of an incident plane wave by

the cavity.

Let us denote Ω ∈ R2 as the cavity embedded in the ground plane with boundary ∂Ω, which

consists of the cavity aperture Γ and the cavity wall ∂Ω \ Γ. Let R2
+ be the region above the

ground plane
{
(x, y) ∈ R2 : y > 0

}
. ∂R2

+ \ Γ is the ground plane without the aperture.

For the transverse magnetic (TM) case, in which the magnetic field is transverse to the

invariant direction and the incident electric field and the total electric field are parallel to

the invariant dimension, i.e., EI = (0, 0, ui) and Etol = (0, 0, u). By the electric continuity

conditions, u vanishes on the cavity walls and on the ground plane except over the aperture Γ.

The time-harmonic Maxwell equation is reduced to

∆u+ k2u = f(x, y), (x, y) ∈ Ω ∪R+
2 , (2.1a)

u = 0, on Γc ∪ (∂Ω \ Γ), (2.1b)

together with the radiation boundary condition

lim
r→∞

√
r

(
∂us

∂r
− ik0u

s

)
= 0. (2.2)

where us is the tangential component of the scattered field ES = (0, 0, us), and k2 = ω2εµ =

k20εrµr. We assume that ε = ε(y) only depends on the variable y. The fields are said to be

source free if the source term f = 0.
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Assume that a plane wave ui = ei(αx−βy) is incident on the cavity from above, where

α = k0sinθ, β = k0cosθ, and −π/2 < θ < π/2 is the angle of incident with respect to the

positive y-axis. The scattered field us can be expressed by us = u− ui + ei(αx+βy). Clearly, us

satisfies

∆us + k20u
s = 0, (x, y) ∈ R+

2 , (2.3a)

us = u(x, 0), on Γ, (2.3b)

us = 0, on Γc. (2.3c)

By using the Green’s theorem, we have

us(x) =

∫

Γ

{
∂Gd(x,x

′)

∂y′
us(x′)

}

y′=0+
dx′. (2.4)

In (2.4), Gd(x,x
′) is the upper half-plane Dirichlet Green’s function for the Helmholtz equation

Gd(x,x
′) =

i

4

[
H1

0 (k0|x− x′|)−H1
0 (k0|x− x̄′|)

]
,

where x = (x, y) and x′ = (x′, y′) denote source point and field point separately, and x̄′ is the

image of x′ with respect to the real axis. By the boundary conditions and the field continuity,

the total field u satisfies the condition on Γ

∂u

∂y
|y=0+ = I(u) + g(x), x ∈ Γ,

where

I(u) =
ik0
2

∫

Γ

1

|x− x′|H
(1)
1 (k0|x− x′|)u(x′, 0)dx′

is called the nonlocal boundary condition or the transparent boundary condition, and g(x) =

−2iβeiαx, x ∈ Γ. Consequently, the scattering problem can be reduced to a bounded problem:

∆u+ k2u = f(x, y), (x, y) ∈ Ω, (2.5a)

u = 0, on ∂Ω \ Γ, (2.5b)

∂u

∂n
= I(u) + g(x), on Γ. (2.5c)

In the TE case, the formulation process can be similarly deduced (see, e.g., [3]), and the total

field satisfies

∇ ·
(

1

εr
∇u

)
+ k20µru = f(x, y), (x, y) ∈ Ω, (2.6a)

∂u

∂n
= 0, on ∂Ω \ Γ, (2.6b)

u = Ĩ(u) + g̃(x), on Γ, (2.6c)

where

Ĩ(u) = − i

2

∫

Γ

1

εr(x′)
H1

0 (k0|x′ − x|)∂u(x
′, y′)

∂y′

∣∣∣∣
y′=0−

dx′, g̃(x) = 2eiαx.
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3. Fast High Order Algorithm

In this section we shall introduce a fast fourth order compact method for the scattering

problem from open rectangular cavities, and take the case of TM Polarization as example. The

algorithm in TE case can be similarly formulated.

3.1. Compact fourth order scheme

Let {xi, yj}M+1,N+1
i,j=0 define a uniform partition of Ω = [0, a]× [−b, 0]. For ease of notations,

we only consider ∆x = ∆y = h, and the main ideas in this work can be extended to rectangular

cavities with ∆x 6= ∆y. Using the notation

δ2xui,j =
ui−1,j − 2ui,j + ui+1,j

h2
, δ2yui,j =

ui,j−1 − 2ui,j + ui,j+1

h2
, (3.1)

the discrete finite difference system in the TM case can be given by

(
1 +

k2(y)h2

12

)
(δ2x + δ2y)ui,j +

h2

6
δ2xδ

2
yui,j + k2(y)ui,j

=fi,j +
h2

12
(δ2x + δ2y)fi,j , i = 1, · · · ,M, j = 1, · · · , N, (3.2)

or in matrix form,

(
(IMN +

h2

12
(IM ⊗D))(AM ⊗ IN + IM ⊗AN ) +

h2

6
(AM ⊗AN ) + IM ⊗D

)
U1

+

(
(IMN +

h2

12
(IM ⊗D))(IM ⊗ aN ) +

h2

6
(AM ⊗ aN )

)
u:,N+1

=
h2

12

(
AM ⊗ IN + IM ⊗AN

)
F1 +

1

12

(
IN
0

)
f0,: +

1

12

(
0

IN

)
fM+1,:

+
1

12
(IM ⊗ bN)f:,0 +

1

12
(IM ⊗ aN)f:,N+1 + IMNF1, (3.3)

where ⊗ denotes the tensor product (Kronecker product), IMN is the MN × MN identity

matrix, and IM is the M ×M identity matrix,

AM =
1

h2




−2 1

1 −2 1
. . .

. . .
. . .

1 −2


 , AN =

1

h2




−2 1

1 −2 1
. . .

. . .
. . .

1 −2


 ,

D = ω2µ0




ε(y1)

ε(y2)
. . .

ε(yN )


 , aN =

1

h2




0
...

0

1


 , bN =

1

h2




1

0
...

0


 ,

and

U1 = (u11, · · · , u1N , u21, · · · , u2N , · · · , uM1, · · · , uMN )T ,

u:,N+1 = (u1,N+1, u2,N+1, · · · , uM,N+1),

F1 = (f11, · · · , f1N , f21, · · · , f2N , · · · , fM1, · · · , fMN )T .
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AM is an M × M matrix, and AN is an N × N matrix. aN and bN are also N dimensional

vectors. f0,:, fM+1,: and f:,0, f:,N+1 denote the vectors when x = 0, 1 and y = 0, 1 respectively.

For the tridiagonal Toeplitz matrix AM , we have

SMAMSM = Λ = diag(λ1, λ2, · · · , λM ),

where SM denotes the discrete Fourier-sine transformation,

(SM )l,m =

√
2

M + 1
sin

lmπ

M + 1
, λl = −4(M + 1)2

a2
sin2

lπ

2(M + 1)
, 1 ≤ l, m ≤ M,

and S2
M = IM . Using the discrete Fourier sine transformation, the discrete system (3.3) can be

written as
(
(IMN +

h2

12
(IM ⊗D))(Λ ⊗ IN + IM ⊗AN ) +

h2

6
(Λ⊗AN ) + IM ⊗D

)
U1

+

(
(IMN +

h2

12
(IM ⊗D))(IM ⊗ aN ) +

h2

6
(Λ⊗ aN )

)
u:,N+1

=
h2

12

(
Λ⊗ IN + IM ⊗AN +

12

h2
IN

)
F 1 +

1

12
(S:,1 ⊗ IN )f0,: +

1

12
(S:,M ⊗ IN )fM+1,:

+
1

12
(IM ⊗ bN)f :,0 +

1

12
(IM ⊗ aN )f :,N+1, (3.4)

where

U1 = (SM ⊗ IN )U1 = (u1,1, · · · , u1,N , u2,1, · · · , u2,N , · · · , uM,1, · · · , uM,N),

u:,N+1 = SMu:,N+1, F 1 = (SM ⊗ IN )F1, f :,0 = SMf:,0, f :,N+1 = SMf:,N+1.

S:,1 and S:,M are the first column vector and the last one of SM separately. Eq. (3.4) can be

further rewritten as
(
(IN +

h2

12
D)(AN + λiIN ) +

h2

6
λiAN +D

)
ui,: +

(
(IN +

h2

12
D)aN +

h2

6
λiaN

)
ui,N+1

=
h2

12

(
λiIN +AN +

12

h2
IN

)
F i,: +

1

12
Si,1INf0,: +

1

12
Si,MINfM+1,:

+
1

12
IBf i,0 +

1

12
IAf i,N+1, i = 1, · · · ,M, (3.5)

where (IA)ij = 0 except (IA)11 = 1; (IB)ij = 0 except (IB)M,1 = 1, 1 ≤ i, j ≤ M. Si,1 and Si,M

are the i1 and iM entry of the matrix SM .

We use the forward Gaussian elimination method with a row partial pivoting to solve each

system in (3.5). Let
(
IN +

h2

12
D

)
(AN + λiIN ) +

h2

6
λiAN +D = LiUi, i = 1, · · · ,M

be the LU -decomposition, where

(IN +
h2

12
D)(AN + λiIN ) +

h2

6
λiAN +D

is a symmetric tridiagonal matrix. The last equations of the system (3.5) can be written as

αiuiN + βiui,N+1 = f̂iN , i = 1, · · · ,M, (3.6)
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where αi is the last component of Ui, βi is the last element of

L−1
i

(
(IN +

h2

12
D)aN +

h2

6
λiaN

)
,

and f̂iN is the right-hand term of the last systems of (3.5) multiplied by L−1
i . Eq. (3.6) is

equivalent to

Dαu:,N +Dβu:,N+1 = f̂:,N , (3.7)

where Dα = diag(α1, α2, · · · , αM ), Dβ = diag(β1, β2, · · · , βM ).

3.2. Fourth order approximation of the nonlocal boundary condition

Next we introduce the fourth order approximation of the nonlocal boundary condition.

Using the Taylor expansion at (xi, yN+1), we can obtain

ui,N+2 − uiN

2h
=(uy)i,N+1 +O(h2)

=

M∑

l=1

Gilul,N+1 + g(xi) +O(h2), i = 1, · · · ,M,

where
∑M

l=1 Gilul,N+1 is the approximation of the hypersigular integration in (2.5a), and it can

be calculated numerically (see in [15]).

Assuming f is sufficiently smooth in Ω and adding the (3.2) on the boundary Γ, we have

ui,N+2 − uiN

2h

=(uy)i,N+1 +
h2

6

(
fy − k2(y)uy − uxxy

)
i,N+1

+O(h4)

=Gui,N+1 + gi +
h2

6
(fy)i,N+1 −

k2(y)h2

6

ui,N+2 − ui,N

2h
− h2

6

δ2xui,N+2 − δ2xui,N

2h
+O(h4),

which leads to a fourth order approximation expression for the boundary condition ∂u
∂n

= I(u)+

g(x),
(
1 +

k2(y)h2

6

)
ui,N+2 − uiN

2h
+

h2

6

δ2xui,N+2 − δ2xui,N

2h
−Gui,N+1

=gi +
h2

6
(fy)i,N+1, (3.8)

or in matrix form
(
IM +

h2

6
D0 +

h2

6
AM

)
u:,N+2 −

(
IM +

h2

6
D0 +

h2

6
AM

)
u:,N

=2hGu:,N+1 + 2hg +
h3

3
(fy):,N+1, (3.9)

where D0 = diag
(
k2(yN+1), k

2(yN+1), · · · , k2(yN+1)
)
, and D0 is M dimensional diagonal ma-

trix. Multiplied by SM , the above equation will turn into

SM

(
IM +

h2

6
D0 +

h2

6
AM

)
SMu:,N+2 − SM

(
IM +

h2

6
D0 +

h2

6
AM

)
SMu:,N

=2hSMGSMu:,N+1 + 2hSMg +
h3

3
SM (fy):,N+1, (3.10)
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where u:,N+2 = SMu:,N+2, u:,N = SMu:,N . Equivalent to the following equation

(
IM +

h2

6
D0 +

h2

6
Λ

)
u:,N+2 −

(
IM +

h2

6
D0 +

h2

6
Λ

)
u:,N

=2hSMGSMu:,N+1 + 2hSMg +
h3

3
SM (fy):,N+1. (3.11)

We can get the u:,N+2

u:,N+2 = u:,N + 2h

(
IM +

h2

6
D0 +

h2

6
Λ

)−1

SMGSMu:,N+1

+ 2h

(
IM +

h2

6
D0 +

h2

6
Λ

)−1

SMg +
h3

3

(
IM +

h2

6
D0 +

h2

6
Λ

)−1

SM (fy):,N+1. (3.12)

To eliminate the values of u at the ghost points, we add the difference equation on (3.2) at the

boundary points (xi, yN+1)(1 ≤ i ≤ M),

(1 +
k2(y)h2

12
)(δ2x + δ2y)ui,N+1 +

h2

6
δ2xδ

2
yui,N+1 + k2(y)ui,N+1

=fi,N+1 +
h2

12
∆fi,N+1. (3.13)

or in matrix form
(
IM +

h2

12
D0 +

h2

6
AM

)
u:,N+2 +

(
IM +

h2

12
D0 +

h2

6
AM

)
u:,N

+

(
(IM +

h2

12
D0)(h

2AM − 2IM )− h2

3
AM + h2D0

)
u:,N+1

=h2f:,N+1 +
h4

12
∆f:,N+1. (3.14)

Multiplied by SM , we have

(
IM +

h2

12
D0 +

h2

6
Λ

)
u:,N+2 +

(
IM +

h2

12
D0 +

h2

6
Λ

)
u:,N

+

(
(IM +

h2

12
D0)(h

2Λ− 2IM )− h2

3
Λ + h2D0

)
u:,N+1

=h2SMf:,N+1 +
h4

12
SM∆f:,N+1. (3.15)

By eliminating the terms u:,N+2 from (3.15) with (3.12), we obtained a fourth order approxi-

mation of the transparent boundary Γ as follows,

(
(IM +

h2

12
D0)(h

2Λ− 2IM )− h2

3
Λ + h2D0 + 2hJ2J

−1
1 SMGSM

)
u:,N+1 + 2J2u:,N

=− 2hJ2J
−1
1 SMg − h3

3
J2J

−1
1 SM (fy):,N+1 + h2SMf:,N+1 +

h4

12
SM∆f:,N+1, (3.16)

where

J1 =

(
IM +

h2

6
D0 +

h2

6
Λ

)
, J2 =

(
IM +

h2

12
D0 +

h2

6
Λ

)
.
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Combining (3.16) and (3.7) yields
(
2

3
h2Λ +

5

6
h2D0 +

1

12
h4D0Λ− 2IM − 2J2D

−1
α Dβ + 2hJ2J

−1
1 SMGSM

)
u:,N+1

=− 2J2D
−1
α f̂:,N − 2hJ2J

−1
1 SMg −

h3

3
J2J

−1
1 SM (fy):,N+1 + h2SMf:,N+1 +

h4

12
SM∆f:,N+1. (3.17)

The rest of the unknowns ui,:, i = 1, 2, · · · ,M can be obtained by computing Eq. (3.5) with

the solved u:,N+1.

Compared with the second order method in [3, 14], the proposed approach has no increase

in the order of the magnitudes in computation complexity, only some addition in the number

of matrix multiplication.

3.3. Iterative solution

For relatively large wave number, the system (3.17) will become ill conditioned, which can

not be solved by the direct method, such as Gaussian elimination because of the expensive

computational spending. The classical iterative algorithms are also less efficient (see Section

4). Thus an effective proconditioner is needed for the iterative method.

Consider the coefficient matrix of (3.17)

B =
2

3
h2Λ +

5

6
h2D0 +

1

12
h4D0Λ− 2IM − 2J2D

−1
α Dβ + 2hJ2J

−1
1 SMGSM .

Assume DG is the diagonal matrix composed by the diagonal entries of the imaginary part of

G, and let the inverse of

M =
2

3
h2Λ +

5

6
h2D0 +

1

12
h4D0Λ− 2IM − 2J2D

−1
α Dβ − i2hJ2J

−1
1 DG (3.18)

be a proconditioner. Then the system becomes

M−1Bu:,N+1 = M−1b,

i.e., (
IM + 2hM−1J2J

−1
1 (SMGSM + iDGIM )

)
u:,N+1 = M−1b, (3.19)

where b denotes the right hand term of (3.17).

4. Numerical Experiments

In this section, we consider the plane wave scattering by rectangular cavities. Example 1

and 2 are the artificial problems, which are used to verify the convergence rate of our method.

The practical physical model is presented in Example 3. We compute the monostatic RCS of

both the unfilled cavity (εr = 1) and the filled one (εr 6= 1). The numerical results show the

efficiency of the proposed high order method.

4.1. Example 1

An artificial example defined by (2.5a) with a cavity a = b = 1 to verify the accuracy of

approximations. The f(x, y) and g(x) are chosen such that the exact function is

u(x, y) = exysin

(
k0x

2

)
sin

((
k0
2

+
π

4

)
y

)
,
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and g(x) is computed by g(x) = ∂u
∂n

− I(u).

Error measures in L2 norm and L∞ norm in the domain Ω are defined by

eM (Ω) = max|uh
i,j − u(xi, yj)|, e2(Ω) =


 ab

M(N + 1)

M∑

i=1

N+1∑

j=1

|uh
ij − u(xi, yj)|2




1
2

separately, where uh
ij denotes the numerical solution at the point (xi, yj). The solution at the

aperture of cavity is more interesting for the calculation of RCS, so we also define the following

error measures on Γ,

eM (Γ) = maxi|uh
i,N+1 − u(xi, 0)|, e2(Γ) =

(
a

M

M∑

i=1

|uh
i,N+1 − u(xi, 0)|2

) 1
2

.
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Fig. 4.1. The eigenvalues distribution of the unpreconditioned B and preconditioned M−1B for the

cavity filled with the medium of εr = 4 + i with 128× 128 meshes when k = 2π and 16π separately in

the TM case.

To verify the effectiveness of the preconditioner M−1, the eigenvalue distributions of the

preconditioned coefficient matrix M−1B for the cavity filled with the medium of εr = 4 + i

are shown for different wave numbers in Figs. 4.1 and 4.2. In Fig. 4.1, (a) and (c) show the

eigenvalue distribution of unpreconditioned coefficient matrix with N = M = 128 for k = 2π

and 16π respectively, and it can be seen that some of the real parts of the eigenvalues cluster
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around zero, and some are negative. This phenomenon is more obvious in Fig. 4.2, which show

the eigenvalue distributions of unpreconditioned (in (a) and (c)) and preconditioned linear

system (in (b) and (d)) with N = M = 1024 for k = 100π, 300π. After making use of the

preconditioner M−1, in (b) and (d) of Figs. 4.1 and 4.2, the real parts of the eigenvalues of

coefficient matrix are positive, and the ratio of the maximum and minimum of the eigenvalues,

which denotes the condition number of the linear system, has drastically decreased. All of

these have improved the convergence behavior of the iterative methods to a large extent. This

can also be observed from Table 4.1 in detail. The precondtioner is very efficient for cavity

model with large wave numbers while using the non-preconditioning method a large number of

iteration is needed to get the convergent solution, even the iteration is not convergent, e.g., for

k = 300π with 512× 512 meshes.

We testified the convergence order of the presented method in Table 4.2, where we consider

the case of empty cavity for k = 8π, 16π, 32π, 64π and the cavity filled with the medium εr = 4+i

for k = 4π, and the convergence order is taken as

Order =
log
(

eh1

eh2

)

log
(

h1

h2

) .

It can be evidently observed that the proposed method is fourth order accurate. To be more
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Fig. 4.2. The eigenvalues distribution of the unpreconditioned B and preconditioned M−1B for the

cavity filled with the medium of εr = 4+i with 1024×1024 meshes when k = 100π and 300π separately

in the TM case.
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Table 4.1: Comparison of the eigenvalues of the preconditioned and unpreconditioned coefficient matrix

for the cavity filled with the medium of εr = 4 + i with the fourth order discretization.

k0 M = N
Preconditioned Unpreconditioned

Iter min|λi| max|λi|
max|λi|

min|λi|
Iter min|λi| max|λi|

max|λi|

min|λi|

2π 128 10 1.3019 2.4006 1.8440 44 0.0599 6.0122 100.29

256 10 1.3022 2.4162 1.8555 63 0.0302 6.0146 199.19

512 10 1.3023 2.4238 1.8611 91 0.0152 6.0151 396.97

1024 10 1.3024 2.4275 1.8639 131 0.0076 6.0153 792.54

16π 128 14 1.2006 2.2582 1.8809 85 0.1917 8.0799 42.143

256 15 1.1756 2.4694 2.1005 131 0.1038 5.9712 57.500

512 16 1.1636 2.5668 2.2059 188 0.0543 6.0043 110.57

1024 16 1.1576 2.6110 2.2555 300 0.0278 6.0126 216.39

100π 512 12 1.1818 2.0163 1.7061 354 0.1944 114.04 586.74

1024 14 1.1363 2.3626 2.0793 450 0.0992 901.88 9092.1

300π 512 7 1.1479 1.4708 1.2813 > 1190 0.2603 2289.4 8795.2

1024 10 1.2186 1.8919 1.5526 745 0.1873 119.90 639.98
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Fig. 4.3. The log-log plot of the error e2(Γ) (△) and e2(Ω) (*) versus the mesh spacing h. The solid

lines are the linear least squares fittings whose slopes are the average orders of accuracy which is 4.8671

for e2(Γ) and 4.1006 for e2(Ω) .

precise about the convergence order, for k = 300π, εr = 4+ i, we use a linear squares fitting to

find the average order of accuracy using

log(Error) ≈ Order log

(
1

N

)
+ C

in Fig. 4.3. We choose N = 384 + 128k, k = 0, 1, 2, · · · , 9. The order is found to be 4.8671 for

e2(Γ) and 4.1006 for e2(Ω).

We also consider the layered media defined by

εr(x, y) =





1, − b
4 ≤ x ≤ 0,

2, − b
2 ≤ x < − b

4 ,

16 + i, − 3b
4 ≤ x < − b

2 ,

1.5, −b/ ≤ x < − 3b
4 .

(4.1)

The numerical results by the second order scheme and the proposed fourth order scheme

are listed in Table 4.3. It is observed that the proposed high order scheme yields nearly fourth
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order accuracy even without any treatment on the interface for the layered media. The reason

may be that the constructed solution is very smooth, and the solution and its second order

derivatives do not have jumps. As only the wave number k has jumps, the local truncation

error is O(h2) at the interface, but O(h4) on all other points. So from the analysis in [21], we

know the convergence rate should be O(h3) for a curve interface. However, as the interface is a

straight line in our case, some terms will be canceled out during the Taylor expansion procedure.

A similar higher order phenomenon was analyzed for one-dimensional problem in [4]. This may

explain the observation of the convergence order higher than the theoretical estimate.

Table 4.2: Errors for Example 1 by the fourth order algorithm.

k0 Error
Meshes

Order
128× 128 256 × 256 512× 512 1024 × 1024

8π eM (Γ) 3.4543e − 06 2.1566e − 07 1.3472e − 08 8.4240e − 10 h4.0005

e2(Γ) 1.8234e − 06 1.1377e − 07 7.1057e − 09 4.4438e − 10 h4.0008

eM (Ω) 8.5228e − 06 5.3562e − 07 3.3511e − 08 2.0966e − 09 h3.9964

e2(Ω) 3.2193e − 06 2.0090e − 07 1.2548e − 08 7.8424e − 10 h4.0011

16π eM (Γ) 6.5289e − 05 4.0707e − 06 2.4511e − 07 1.5877e − 08 h4.0019

e2(Γ) 3.6142e − 05 2.2545e − 06 1.4087e − 07 8.8053e − 09 h4.0010

eM (Ω) 1.2776e − 04 8.0675e − 06 5.0576e − 07 3.1646e − 08 h3.9930

e2(Ω) 3.7853e − 05 2.3649e − 06 1.4790e − 07 9.2486e − 09 h3.9996

32π eM (Γ) 9.0463e − 04 5.5019e − 05 3.4010e − 06 2.1131e − 07 h4.0213

e2(Γ) 5.3045e − 04 3.1946e − 05 1.9729e − 06 1.2271e − 07 h4.0259

eM (Ω) 1.8000e − 03 1.1393e − 04 7.1364e − 06 4.4733e − 07 h3.9915

e2(Ω) 3.7274e − 04 2.2401e − 05 1.3842e − 06 8.6137e − 08 h4.0264

64π eM (Γ) 7.8000e − 03 4.3901e − 04 3.0451e − 05 1.9409e − 06 h3.9908

e2(Γ) 5.1000e − 03 1.6203e − 04 1.1690e − 05 7.5764e − 07 h4.2389

eM (Ω) 2.6200e − 02 1.7000e − 03 1.1066e − 04 6.9446e − 06 h3.9605

e2(Ω) 4.5000e − 03 3.5064e − 04 2.2692e − 05 1.4327e − 06 h3.8723

4π eM (Γ) 2.7234e − 07 1.6905e − 08 1.0532e − 09 6.5571e − 11 h4.0067

4 + i e2(Γ) 1.6551e − 07 1.0271e − 08 6.3977e − 10 3.9816e − 11 h4.0071

eM (Ω) 1.2255e − 06 7.7096e − 08 4.8329e − 09 3.0231e − 10 h3.9950

e2(Ω) 2.0943e − 07 1.3045e − 08 8.1393e − 10 5.0766e − 11 h4.0034

Table 4.3: Errors for the solutions of Example 1 of the cavity filled with layered media (4.1) by the

2nd order scheme and the proposed algorithm.

Method k0 Error
Meshes

Order
128× 128 256× 256 512 × 512

4π e2(Γ) 9.6031e − 05 2.4938e − 05 6.5645e − 06 1.9353

e2(Ω) 1.8431e − 04 4.5277e − 05 1.1438e − 05 2.0051

second 16π e2(Γ) 2.6602e − 03 6.6559e − 04 1.6415e − 04 2.0092

order e2(Ω) 1.9100e − 03 4.7936e − 04 1.2226e − 04 1.9944

64π e2(Γ) 1.0914e − 02 3.4200e − 03 6.7398e − 04 2.0087

e2(Ω) 3.2991e − 02 8.3633e − 03 2.0826e − 03 1.9916

4π e2(Γ) 8.3500e − 08 5.4024e − 09 3.4361e − 10 3.9624

e2(Ω) 1.3304e − 07 8.3853e − 09 5.3676e − 10 3.9767

fourth 16π e2(Γ) 1.6443e − 05 1.0328e − 06 6.5806e − 08 3.9825

order e2(Ω) 1.7499e − 05 1.1554e − 06 7.3394e − 08 3.9487

64π e2(Γ) 7.0315e − 03 4.6567e − 04 2.9844e − 05 3.9401

e2(Ω) 7.4880e − 08 4.7034e − 09 2.9473e − 10 3.9414
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Remark 4.1. If the second order derivatives of the solution have jumps at the interfaces of

the layered media, both the second order and fourth order scheme will only result in the first

order accuracy. The Helmholtz interior problem with this kind of solution has been considered

in [26].

4.2. Example 2

Another artificial example defined by (2.5a) with a cavity a = b = 1 is used to verify the

accuracy of approximations. The f(x, y) and g(x) are chosen such that the exact function is

u(x, y) = (1 + i)sin

(
k0x

2

)
sin

(
(k0 − π)(y + 1)

2

)
,

and g(x) is computed by g(x) = ∂u
∂n

− I(u).

In Table 4.4, we report the results, including the errors and CPU time, for second order and

fourth order computations with 4, 8, 16, 32, 64, 128 and 256 points per wavelength (λ/h) when

k0 = 8π. As seen in the table, the proposed method is fourth order accurate. The fourth order

method obtained much more accurate solutions than the second order algorithm by costing

almost the same CPU time with the same mesh density. The solution computed by the fourth

order scheme with 16 points per wavelength is comparable to that computed by the second
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Fig. 4.4. The error distribution at the aperture of the empty cavity for k = 300π, 400π, 500π, 600π in

(a), (b), (c) and (d) separately with 1024× 1024 meshes.
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order scheme with 256 points per wavelength. So much CPU time can be saved with our fourth

order method to get the same accurate solution.

Finally, for large wave numbers, such as k = 300π, 400π, 500π, 600π, the errors of the solu-

tions on the part of the boundary Γ are displayed with 1024× 1024 meshes in (a-d) of Fig. 4.4

separately, x ∈ [0, 0.125] in (a) and (b), and x ∈ [0.25, 0.5] in (c) and (d). The proposed

algorithm gives excellent accuracy for relatively large k.

Table 4.4: Errors and CPU time (sec.) for Example 2 by the second and the fourth order algorithm

with k0 = 8π.

Meshes λ/h
second order fourth order

e2(Ω) Order CPU e2(Ω) Order CPU

162 4 1.9854e − 02 0.031 2.6579e − 03 0.043

322 8 8.2621e − 03 1.2648 0.094 1.5206e − 04 4.1276 0.125

642 16 1.6799e − 03 2.2981 0.359 9.4527e − 06 4.0078 0.328

1282 32 3.8917e − 04 2.1099 1.219 5.9211e − 07 3.9968 1.188

2562 64 9.6122e − 05 2.0125 6.047 3.7080e − 08 3.9972 5.594

5122 128 2.3975e − 05 2.0033 25.25 2.3103e − 09 4.0045 27.51

10242 256 5.9922e − 06 2.0004 141.0 1.4420e − 10 4.0019 150.5
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Fig. 4.5. Magnitude of the aperture field at normal incidence with homogeneous medium εr = 1.0 when

k0 = 32π.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

x

M
A

G
N

IT
U

D
E

Fig. 4.6. Magnitude of the aperture field at θ = π/4 with homogeneous medium εr = 1.0 when k0 = 64π.
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4.3. Example 3

Consider a plane wave scattering from a rectangular groove with 1 meter wide and 0.25 meter

deep at normal incidence. We applied the presented fourth order scheme to discrete the model,

and the precondtioned BICGstab method to solve the last linear system. The magnitude and

phase of the field of the cavity filled with the medium εr = 1.0 and εr = 4.0 + i are given, and

the interesting physical parameter, the radar cross section (RCS) is also computed in Fig. 4.7,

in which the numerical results by the fourth order method are compared with those results,

indicated by ‘o’, obtained by the finite element method in [6]. For some large k such as 32π,

64π, the numerical results are given in Figs. 4.5 and 4.6, in which high oscillation of the solution

is clearly displayed.
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Fig. 4.7. The magnitude and phase of the aperture of electric field at normal incidence and the

backscatter RCS for the empty cavity (εr = 1.0 ) and the filled cavity (εr = 4.0 + i) in the TM case

when k0 = 2π.
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5. Conclusions and Future Work

In this paper, a fast high order method has been presented for the analysis of the scattering

from open rectangular cavities. In the interior of the domain, a compact fourth order scheme

is used to discrete the Helmholtz equation, and a special treatment is enforced on the nonlo-

cal boundary, which yields that the truncation errors in Ω reach O(h4). The fast algorithm is

presented to reduce the resulting discrete system to an interface linear system employing the dis-

crete Fourier transform in the horizontal direction and the Gaussian elimination in the vertical

direction. An effective preconditioner for the BICGstab iterative solver is proposed to improve

the condition number of the interface linear system, which further raises the efficiency of the

presented fourth order algorithm. Numerical experiments showed that the proposed method

could obtain higher accurate solutions with less mesh points, which can lead to a remarkable

saving in the computation cost. The scheme with about four points per wavelength sufficiently

well approximate the oscillatory solution for the large wave number k, such as 400π, 500π. For

the cavity model in which the second order derivatives of the solution are discontinuous in the

domain, some special treatments on the interfaces between the layered media are needed to get

the higher order accuracy, such as using the immerse interface method. It will be presented in

our future work.
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