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Abstract. In this paper, we introduce a novel hybrid variational model which gen-
eralizes the classical total variation method and the wavelet shrinkage method. An
alternating minimization direction algorithm is then employed. We also prove that it
converges strongly to the minimizer of the proposed hybrid model. Finally, some nu-
merical examples illustrate clearly that the new model outperforms the standard total
variation method and wavelet shrinkage method as it recovers better image details
and avoids the Gibbs oscillations.
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1 Introduction

Digital image denoising plays an important role in numerous areas of applied sciences
such as medical and astronomical imaging, film restoration, and image/video coding.
Throughout this paper, we suppose that () is an open bounded set of R? with Lipschitz
boundary and all the images are regarded as elements in a classical space

H:=L1*(Q),

*Corresponding author. Email addresses: zeng@hkbu. edu.hk (T. Zeng), lixiaolong@icst.pku.edu.cn (X. Li),
mng@math.hkbu.edu.hk (M. Ng)

http:/ /www.global-sci.com/ 976 (©2010 Global-Science Press



T. Zeng, X. Li and M. Ng / Commun. Comput. Phys., 8 (2010), pp. 976-994 977

a separable infinite-dimensional real Hilbert space with usual inner product (-,+), norm
| -|l2. Note that as every element in L?>()) can be regarded as a continuous linear func-
tional which maps every test function to their inner product, here we consider H as a
distributional space for convenience. Moreover, we focus on a common noisy model: an
ideal image u € H is observed in the presence of an additive zero-mean Gaussian noise
b € H of standard derivation ¢. Thus the observed image f € H is obtained by

f=u+b. (1.1)

In the past decades, many denoising approaches have been proposed to handle this
ill-posed problem. One of the widely studied techniques is the wavelet shrinkage method,
which acknowledges that by applying a wavelet transform on a noisy image, random
noise will contribute mainly as small coefficients in the high frequencies. Therefore, the-
oretically one can remove much of the noise in the image by setting these small coeffi-
cients to zero. The wavelet hard shrinkage method, which shrinks the wavelet coeffi-
cients smaller than some predefined threshold in magnitude to zero, is extremely easy
and rapid to implement. Depending on the threshold, it can reduce noise rather effec-
tively. However, it also revokes unpleasant artifacts around discontinuities as a result
of Gibbs phenomenon. As artifacts in some image processing tasks may lead to great
inconveniences, the wavelet hard shrinkage can not be used in these tasks without ex-
tra efforts. A development over the wavelet hard shrinkage is the wavelet soft shrink-
age [15,16], which diminishes significantly the Gibbs oscillation. Usually, the potential
of wavelet shrinkage methods is rather promising when they are combined with other
complex techniques which often try to take advantage of geometric information by ap-
plying wavelet-like bases better characterizing discontinuities, such as curvelets [5,17]
which can be regarded as one of the best methods among this direction. However, none
of them can entirely efface the Gibbs oscillation.

Another important approach adopts regularization techniques and variational prin-
ciples. Usually this approach is to determine the denoised image by minimizing a cost
function consisting a data-fitting term and a regularization term

min_ ||~ w|3 +6R(w), (12)

where R is the regularization functional and S is a positive parameter. Various possibil-
ities for R(w) have been proposed in literature and earlier efforts concentrated on least
squares based functionals such as ||Aw||3, ||[Vw]||5 and others. Though noise can be ad-
equately reduced, these regularization functionals also impose penalty on discontinuity,
conducting to rather smooth restoration images, with subtle details disappeared.

A Dbetter choice for R(w) was developed in [24], in which R (w) is the total variation
of w € H commonly defined by

R(w)=TV(w):= /Q IDw, (1.3)
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where Dw is the distributional gradient of w.

Remarkable investigations have demonstrated that the total variation permits sharper
reconstruction and better preserves edges in image. Moreover, it is capable of removing
artifacts revoked by other methods since these artifacts usually have rather high total
variation value. Therefore, current researches are increasingly focusing on the combi-
nations of total variation and wavelet-like methods. In [23,25], in order to reduce the
Gibbs artifacts, a set of wavelet coefficients was interpolated according to a total varia-
tion criterion. This was close to the approach of [9] where PDE techniques were used to
reduce edge artifacts generated by wavelet shrinkage. In [10,19] the authors proposed to
determine the most meaningful wavelet coefficients, also via a total variation criterion.
In [18, 34], another algorithm was introduced where information was removed from the
residual image w—v by using a wavelet analysis, thus allowing for the composition of
wavelet techniques with any other method such as variational one. In [20,26], a hybrid
approach by minimizing the total variation on a convex set controlled by a wavelet basis
(or other dictionary) was investigated. In [30], the authors analyzed the possibilities to
avoid Gibbs-like artifacts for multiscale Haar wavelet shrinkage by combining the ad-
vantages of wavelet and PDE/variational approaches.

The goal of this paper is to provide a mixed variational model for total variation and
wavelet shrinkage to enrich the hybrid direction. For this, we need to transform the
wavelet shrinkage method to variational form. Indeed, it is well known that the wavelet
soft shrinkage is equivalent to the following optimization task

1 )
min3|f-wlta T [0

where « is a positive parameter and D is a orthogonal wavelet basis of H.

The soft-shrinkage can be interpreted from a MAP point of view. Generally, if the
wavelet coefficients of the underlying image are assumed independent and Laplace dis-
tributed (zero mean) then one can prove that the linear Bayesian estimate is optimal in
mean squared error sense and it is just the wavelet shrinkage. However, usually for nat-
ural images, the distribution of wavelet coefficients is far from a single statistical model
such as Gaussian or Laplace since they are highly correlated. Indeed, it is pointed out
in [12] that most natural images have non-stationary properties as they typically consist
of regions of smoothness and sharp transitions. These regions of varying characteristics
can be well differentiated in the wavelet domain. A common technique to overcome this
problem is to apply adaptive shrinkage scheme. In [12], each wavelet coefficient is mod-
eled as a random variable following the so-called Generalized Gaussian distribution with
an unknown parameter and a spatially adaptive wavelet shrinkage method based on
context modeling is then proposed. In [21], the author examined some non-linear shrink-
age methods which take into account the correlation structures of the multi-resolution
wavelet coefficients.

In this paper, instead of modeling those non-stationary structures (which are rather
complex for natural images), we are interested in a new scheme which is composed of
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three steps: first, remove the basic structure out of the noisy image to get a stationary
residual; second, apply wavelet shrinkage on the stationary residual to extract extra de-
tails; third, add back the extra details to the basic structure to form a result image.

Noting that in many cases, the cartoon part of Rudin-Osher-Fatemi method is rather
good to extract the basic structure from the noisy image and the only problem is that
it loses some texture information as usually the texture part has a higher total variation
value. This also hints us to consider the recompensation idea: if one can extract some
extra texture information from the residual and add it back to the cartoon part, then we
have a greater chance to obtain a better result. In these regards, we propose to study the
following unified minimization model

1
min o || f—r—w(3+a ) [(r,¢)|+BTV (w), (1.4)
ZU,VEHZ ocD

where a, B are fixed positive parameters and we will take
U=W+T,

as the denoising result. The physical idea of this model is that the noisy image f can be
decomposed into three parts: a Gaussian noise part, a cartoon part characterized by the
total variation and a detail part which has sparse representation over the dictionary D.
Note that the idea of decomposing image into several rather homogenous components
appears numerously in the domain of image processing [3,7,13,29]. In this paper, we
choose the infinite convolution of TV and wavelet-type energy to illustrate that simple
ideas also derive rather good results. The differences between our model with the pre-
vious works are clear. For instance, since none of [9, 10, 18-20, 23, 25, 26, 30, 32-34] has
been addressed in the form of decomposition into three different components: cartoon
part, texture part, noise part, they are evidently different from ours. Moreover, com-
pared to [7,13] where inf-convolution of two convex potentials are proposed, we concen-
trate on a specific energy choice which provides promising results; compared to [29], our
minimization algorithm on the objective functional itself, not the approximated ones, is
casted in a more rigorous theoretical way since we use only one dictionary; compared
to [3] where the indeed purpose is for decomposition, we use an energy more suitable for
denoising since total variation and wavelet shrinkage have been supported by extensive
works in image processing. Moreover, when a = +o00, we need to take r =0 and thus this
model reduces to the Rudin-Osher-Fatemi (ROF) model. Similarly, if § = +o0, we should
take w as zero (or other constant), then this model reduces to the wavelet shrinkage.

The outline of the paper is as follows. In Section 2, some preliminaries and discussions
on the new model are addressed. In Section 3, we present an alternating minimization
direction algorithm to solve the proposed model. In Section 4, the convergence of the
proposed algorithm is analyzed. In Section 5, numerical examples are given to illustrate
the effectiveness of the proposed model. Finally, some concluding remarks are addressed
in Section 6.
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2 Preliminaries and discussions

2.1 The BV space

The BV (Q) is the subset of functions u € L'(Q) such that the following quantity is finite

() =sup{ [ u-div(e(x)dx|ge CFOQR), ¢l mam <1}

BV (Q) endowed with the norm ||u||py = ||u||;1+](u), is a Banach space. If u € BV(Q),
the distributional derivative Du is a bounded Radon measure and the above quantity
corresponds to the total variation, i.e.,

J(u)= [ |Du,
Q
and we can also define the BV space as
— 1 .
BV(0)={well(0); /Qway <+oo}.

For QCRR?, if 1<p<2, we have
BV(Q) CLF(Q).

Moreover, for 1 < p <2, this embedding is compact. See book [2] for further details about
the BV space.

Since BV (Q) C L2(Q)), we can extend the functional | (which we also denote by TV)
over L2(Q)

_ [ JqlDu|, if ueBV(Q),
Tv(w)= { Yoo, if ue2(Q)\BV(Q).

Note that the definition of Eq. (2.1) is consistent with Eq. (1.3).

Let u be the Lebesgue measure. The following Calderén-Zygmund theorem is useful
for us.

Theorem 2.1. (Thm 3.83, [1]) Any function u € BV (Q)) is approximately differentiable at y-
almost every point of (). Moreover, the approximate differential Vu is the density of the absolutely
continuous part of Du with respect to .

2.1)

2.2 Basic properties of the unified model

Now suppose the Hilbert space (H,H) is the product of H and H and for any (r,w) €
(H,H), we consider the following functional

E(rw)= 5 f—r—wl+e T () +BTV () 22)
p€E

The Bessel’s equality of orthogonal wavelet basis is essential to the proof of the following
proposition.



T. Zeng, X. Li and M. Ng / Commun. Comput. Phys., 8 (2010), pp. 976-994 981

Proposition 2.1. We have:
1. The functional E(r,w) is coercive and convex,

2. For any global minimal point (r*,w*) of E(r,w), r*+w* is unique,

3. The global minimal point of E(r,w) is unique up to an image of approximate differ-
ential zero.

Proof. The convexity of E is obvious. Suppose that (r,w) — co. Then one of the following
two cases must be true:

@ [Irll2 = o0y (i) [|r[l2 < oo, [Jw]l2 — -e0.
Noting that

(T 1)) = T o) P=rl,
oD oD

both cases will lead to
E(r,w)— +o0.

Therefore, E(r,w) is coercive. Moreover, since E is coercive and convex, the global min-
imal point set of E is non-empty, compact and convex. Furthermore, if we suppose that
(r1,w1),(r2,wo) € (H,H) are two different global minimal points, then for any 6 € (0,1),
we have

O (r1,w1) +(1—0)E(r2,wz) =E(6r1+ (1 6)r2,6w1 + (1-0)w).

As each term in E(r,w) is convex, the above equality means that for each term in E(r,w)
the equality holds

0llf —r1—wi|3+(1=0)||f—r2—w2) 3= f —0(r1 +w1) — (1-6) (r2+w2) |13,
0TV (w1)+(1—6)TV (wy) = TV (6w + (1—0)wy).

We thus obtain
r+wy=r2+wy, (2.3)
9/ wa1|+(1—9)/ |Dw2]:/ 16Dw; + (1—6) Dawy). (2.4)
0 0 0
Eq. (2.3) illustrates the second assertion. Let
S=51US,,

where 51,5 is respectively the approximately non-differentiable set of wy,w,. As TV (+)
is indeed convex on S and on 0\ S, by Jensen inequality, we have

9/5\le1+(1—9)/5wa2\z/syeDw1+(1—e)Dw2\,

9/ wa1|+(1—9)/ wazyz/ 16Dw; + (1—6) Daws .
Q\s Q\s Q\s



982 T. Zeng, X. Li and M. Ng / Commun. Comput. Phys., 8 (2010), pp. 976-994

Together with Eq. (2.4), the above two inequalities should be equalities. Hence, we have
9/ |ley+(1—9)/ |Vw2|:/ 10V w; +(1—6)Vaws|. (2.5)
O\S O\S O\S

By Theorem 2.1, we know that

1(S) <u(S1)+u(S2)=0.

Hence, we have
9/ |Vw1|+(1—9)/ |szy:/ 0V W, + (1—8) Vs . (2.6)
0 0 0
By using (2.6), and denoting
g=0|Vwi|+(1-0)|Vwz|—|0Vwi+(1-0)Vw,|,

then we have
>0 d / =0.
8= an Qg

Therefore, g=0 (in distributional sense, this means that for any test function 7 € C§°(Q)),
we have (g,77) =0) and Vw; = Vw,. (This means that the approximate differential parts
of w1 and w, are the same). This leads to

V(w1 —ZUQ) =0.

Hence, the global minimal point of E(r,w) is unique up to an image of approximate dif-
ferential zero. O

2.3 Characteristics of the two components

Suppose (r*,w*) is a solution to (1.4). Then easily we know that
* 1 2
TV (') < 3 [fI3 < +eo.
Noting that Q) is an open bounded subset of R?, we have

1(Q) < +oo,

where 1(Q) is the Lebesgue measure. Using Corollary 14.7 of Book [4], since w* € L2(Q)),
we have
w*eLl®(Q), Vse[l,2).
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In particular, w* € L' (Q)) and so w* is in the BV space. Now for r*, observing that

* . 1 * (12
r —arggél,{{15||f r—w Hz“‘"‘(ﬂ%w"q)”'

we know that r* is the wavelet soft-shrinkage result of f —w*:

=Y pu({f—w",9))e,

peD
where p, is the soft-shrinkage function defined by

t—u, if t>a,
pa(£)=¢ 0, if te(—a,u), (2.7)
t+a, otherwise.

Hence, every non-zero term appearing in r* will lead to a wavelet coefficient of f—
w* with modulus bigger than x. However, by Proposition 2.1, we know that f —w* is
bounded. Therefore, r* is linear combination of finitely many wavelet filter terms.

Usually, a natural image is composed of two different components: a smooth part
and an oscillating part (or detail part). For the oscillating part, the total variation is rather
high, so it will prefer to be represented by r*; for smooth part, as the TV is rather low, it
will be described by w*. Overall, we obtain a decomposition of the ideal image: cartoon
part w* and oscillating part r*. The former is in the BV space and the latter is a linear
span of finitely many terms of wavelet filters which have rather high frequencies.

3 Alternating minimization direction algorithm

In Eq. (1.4), there are two unknown images, one is the cartoon part w, and the other is
the oscillating part r. In this paper, we propose an alternating minimization direction
approach to solve the new model:

1. Initialize ry,

2. Repeat until convergent

e update
1
wy=argmin | (f 7 1) ~wl3+TV (@), (3.1)
1
= argmin | (F=wn) —rl3+2 ¥ |(r.9)) 62)
peD
o take

un :wH'i-rn.
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In the upcoming section, we will study the convergence of w,,r,,. Let us first analyze
the computational cost of the alternating minimization algorithm.

The first step of the method is to compute the cartoon part by applying an exact TV
denoising scheme to the image without the oscillating part. The minimizer of the opti-
mization problem

min (F=ra-1) w3+ BTV (w),

can be solved by many TV denoising methods such as Chambolle’s Projection [6], the
semismooth Newton method [22], the multilevel optimization method [11], and the graph-
based optimization method [8].

The second step is to calculate the oscillating part from the image without the cartoon
part. The minimizer of the optimization problem

o1
min || (f —wn) —r|3+a } [(re)],
peD

is given by the wavelet soft-shrinkage on f —w,. Therefore, this step has a simple closed
form.

Overall, as the solving of Eq. (3.2) has a simple closed form and the minimization of
Eq. (3.1) is efficient, the proposed algorithm will be rather effective. Indeed, numerically
we observe that for real image restoration task, setting the outer iteration as 10 to 15 has
been already enough.

4 Convergence analysis

In this section, we investigate the convergence of the alternating minimization algorithm.
We make use of the classical alternating minimization method to show that the algorithm
converges weakly to a minimizer of E(r,w) and then prove that the convergence holds in
the norm topology as well.

4.1 Lower semi-continuity

Before the convergence analysis, we present some preliminary results on the lower semi-
continuity.

Definition 4.1. Let X be a Banach space and F: X — R be a functional on X. F is called
lower semicontinuous (Ls.c.) for the weak topology if for any sequence (x,) converging
weakly to xp, we have

liminfF(x,) > F(xo).

n—oo

The same definition can be given with the strong topology.
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Theorem 4.1. (I.s.c. strong and weak, see book [2]) Let F — R be convex. Then F is weakly
Ls.c. if and only if F is strongly L.s.c..

Using this theorem, one can prove:
Proposition 4.1. The following functions are all weakly Ls.c.,
(i) f1:x+— ||x—al||5 where x € H and a is a fixed element in H;

(i) f2:x— Lpep|(x,¢)| where x€'H and D is a countable dictionary in H;
(iii) f3:x— TV (x) where x € H.

Proof. The weak lower semi-continuity of f;, f, is straightforward. The weak lower semi-
continuity of f3 is a special case of Theorem 2.1.3 of book [2]. O
4.2 Weak convergence

Now we have the result of weak convergence.

Theorem 4.2. We have:
(i) the sequence (r,,wy) converges weakly to a global minimal point of E(r,w);

(ii) the sequence (u, ) converges weakly to a unique point regardless of the initialization.

Proof. As our alternating minimization algorithm falls into the category of Proximal
Forward-Backward Splitting method (see [13]), the weak convergence of (u,) is direct.
Noting for any minimal point (r*,w*) of E(r,w), by Proposition 2.1, r*+w* is always
constant. Therefore, the sequence (u,) converges weakly to this constant which is then
independent of the initialization of (o, wy). O

4.3 Strong convergence

We can also prove the strong convergence of r,,,w, with the help of the following lemma.

Lemma 4.1. (Lemma 4.3 of [14]) If the sequence of vectors (gx)ken converges weakly in H to
g, and

lim ) [(g.8)= 1 [{@:8)],

i

T®peD ¢eD
then (gx)ren converges to g in the H-norm, i.e.,

lim [[g =g [|2=0.
k—o0

Finally, we can prove our main result.
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Theorem 4.3. We have:
(i) the sequence (wy,ry,) converges strongly to a global minimal point of E(r,w);

(ii) the sequence (u,) converges strongly to a unique point regardless of the initialization.

Proof. We only need to prove that the convergence of (r,), (wy) is strong. Noting that
(rn,wy) converges weakly to a global minimizer (r*,w*) of E(r,w), we know that

lim E(r,,w,)=E(*,w").

n—oo

Therefore,
limsup E(r,,w,) =E(r*,w").

n—oo

As E(r,w) contains three convex terms, we thus have

liminf% | f—wn—rul3+alimsup Y [(ry, )|+ BEminf TV (w,)
n—oo n—oo

n—oo ¢€D

<limsup E(r,,w,) =E(r*,w"),

n—oo

where we used twice the propriety that
liminfx, +limsupy, <limsup(x,+y,).

Using Proposition 4.1, we have

. . 1 1 * *
hgr_1>1£f§||f—wn—rn”%2 EHf—w —r*13,

Hminf TV (wy,) > TV (w*).
n—oo

Hence, we must have

limsup Z (T, )| < E (@),

n—e peD pED

but still according to Proposition 4.1, we have

liminf Y [(ra,¢)[ > Y [(r*,9) .

peD peD

Therefore, the only possible choice is that

limsup ) |(ru, @) =liminf }_ |(re, @)= }_ (", @),

n—0co eeD peD peD

ie.,

lim 3 [(ru9) = X 17" )l

peD peD
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By Lemma 4.1, (r,,) converges strongly to r*. Similarly, we can prove that
Jim [| f —wy —rull2=[|f —w" =1"[|2.
It is well known that in any Hilbert space, if (g, ) converges weakly to ¢* and
lim [|gnfl2= 18" I,

then g, converges strongly to ¢*. Based on this observation, (f—w,—r,) converges
strongly to f—w* —r*. Moreover (w,) converges strongly to w*. O

5 Experiments

In this section, we discuss the performance of our proposed model for image denoising
problems. The signal-to-noise-ratio (SNR) is defined as

; Igll2
SNR(g,3) 201og10(Hg_g.,H2),
where g,§ are the original and observed image, together with the visual effect are used
to assess the quality of the restored image. The computer that we use is of Linux system
(Mandrake 10) with Intel Core Quand CPU 2.66 GHz and 3.48G RAM. We code in C
under Megawave?2 (see "http://megawave.cmla.ens-cachan.fr/”). The outer iteration
of our main algorithm is set as 10. We compare the proposed model (hybrid one) with
the wavelet shrinkage and the ROF method. In all these experiments, the noise stand
deviation ¢ is fixed as 20 and the SNR of the noisy image varies accordingly. In order
to escape from the jungle of parameter tuning, we fix =50 which corresponds to A =

1/28=0.01, when one uses the standard form of the ROF model

inTV Al f—wl|3.
min (w)+A[f—wl3

Moreover, we take o =30 = 60.

In this paper, we use the Daubechies-4 wavelet basis of level 3 due to its simplicity.
Note that the tuning of the different wavelet basis may lead better result though this is
beyond the scope of the current paper. Roughly speaking, a wavelet basis adaptively (in
the sense of sparse representation) to the ideal image is in favoring of better result. We
refer the reader to [27, 35,36] for some discussion related to basis choosing (or in more
general settings, dictionary choosing).

The first experiment is for the Barbara image. The leg part of this image and the
SNR value for the whole image are shown in Fig. 1. The Gibbs phenomenon of the
wavelet shrinkage is rather clear and the ROF model suffers from the washout effect.
However, for our new approach, we observe better texture reconstructions and the Gibbs
oscillations are totally removed. The CPU time is about 30 seconds for our algorithm.
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Figure 1: Leg part of Barbara and SNR for the total image of Barabara. Top-left: clean image; top-right: noisy
image degraded by Gaussian noise of standard deviation 20, SNR =8.70; bottom-left: result of the wavelet
soft-shrinkage with a =50, SNR=10.57; bottom-middle: result of the ROF model with A=0.01, SNR=10.87;
bottom-right: new model with « =50, =60, SNR=12.22.

Figure 2: The cartoon part w; (left) and the texture part r,, (right) for the leg part of the Barbara image.

In order to better understand the basic idea of our hybrid model, we also display the
two components w,,,r, of the result image of our approach in Fig. 2. One can discover
that the cartoon part w, is rather smooth and the detail part 7, is composed of textures
captured by the wavelet basis. This is indeed expected by using our model.

Our next example is for the Mandrill image. The original image, the noisy image and
the restoration results of the wavelet shrinkage method, the ROF model and the new ap-
proach are displayed in Fig. 3. This time, the Gibbs oscillation of the wavelet shrinkage is
less prominent than the previous two examples due to the fact that the original image has
texture nearly everywhere. But it still loses some important information (see face part,
for instance) as well as the ROF model. And it is rather evident that the new approach is
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Figure 3: Experiments on the Mandrill image. Top-left: clean image; top-right: noisy image degraded by
Gaussian noise of standard derivation 20, SNR=5.77; bottom-left: result of wavelet soft-shrinkage with & =50,
SNR=5.97; bottom-middle: result of ROF, SNR=6.23 with A=0.01; bottom-right: result of new model with
x=>50, p=60, SNR=7.45.

Figure 4: The Mandrill components: cartoon part w,, (left) and detail part r,, (right).

better since it recovers better details (see face part and beard part, for example). The CPU
time is about 7 seconds for our algorithm.

The components w,,r, of the result image are exposed in Fig. 4. The cartoon part w,
is rather smooth and the texture part r,, contains some significant information which has
a rather high total variation value.

The third example that we want to discuss is to the Boat image. The clean, noisy
images and the restoration images by wavelet shrinkage, ROF and the new approaches
are exhibited in Fig. 5. The result of wavelet shrinkage has visible Gibbs oscillation par-
ticularly in those rather flat regions and the ROF loses some crucial details due to the
smoothing effect. However, our new approach can recover more details (see the cords
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Figure 5: Experiments on the Boat image. Top-left: clean image; Top-right : noisy image (SNR is 10.16).
Bottom-left: result of wavelet shrinkage (SNR is 11.96); Middle: result of ROF (SNR is 13.79); Right: result
of our new model: (SNR is 15.67).

Figure 6: The components of the Boat image: the cartoon part (left) and the detail part (right).

and letters for example) without any perceptible Gibbs artifact. The CPU time is about 8
seconds for our algorithm.

The two components of the result image of Boat are presented in Fig. 6. Again, the
cartoon part w, is rather smooth and the detail part r, captures some higher frequency
information missed by the cartoon part.

At last we report the experiment on the Cameraman image. The clean image and
noisy image are demonstrated on the top of Fig. 7. The results of the wavelet shrinkage
method, the ROF model and the new approach are shown on the bottom of the same
figure. One can see that the Gibbs effect of wavelet shrinkage is rather clear; the result of
ROF is rather clean but some details are lost. Our new approach avoids entirely the Gibbs
oscillation and the details (the ground, for instance) are better recovered. This can also
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Figure 7: Experiments on Cameraman. Top-left: clean image; top-right: noisy image degraded by Gaussian
noise of standard derivation 20, SNR =9.87; bottom-left: wavelet soft-shrinkage with a =50, SNR =11.89;
bottom-middle: ROF, SNR=13.61; bottom-right: new model with =50, f=60, SNR=15.73.

be confirmed if one compares the SNR values of these images. The CPU time is about 7
seconds for our algorithm.

The components w,,r, of the result image are also reported in Fig. 8. In this case,
though the Cameraman image has less texture than the Barbara image, the wavelet filters
still can extract some important information into the detail image.

As an interesting example recommended by the anonymous reviewers, here we also
compare our approach with Meyer’s model to show their difference. This model was
first proposed in [28] and later studied in [31] as an important image decomposition
method to replace the classical ROF model. The Meyer’s model decomposes an image
as two components: a cartoon part which has small TV value, and a detail part mainly
containing noise and texture information which can be controlled by the so called G-
norm (see [28,31] for details). Theoretically, when the ideal image does not contain too
much texture information, this model can also be used as an image denoising model since
the detail part will mainly contain noise information. Hence, we use the Cameraman
image for comparison which is indeed in favoring of Meyer’s model. The noisy image
to be decomposed/denoised is the same as top-right of Fig. 7. We tune the parameter
of Meyer’s model to obtain a reasonable separation. The cartoon part and detail part of
the Meyer’s model are shown in top of Fig. 9; the result of our model and its residual
are shown in bottom of Fig. 9. Clearly, some high frequency information is decomposed
into detail part of Meyer’s model (this is expected by the model) and our denoising result
contains more information (see house part for instance). This fact is further confirmed by
the comparison of SNR values.
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Figure 9: Decomposition experiments on Cameraman. Top-left: cartoon part of Meyer's model, SNR =13.24;
texture and noise part of Meyer's model; bottom: our model with # =50, =60, SNR=15.73 and its residual.

6 Conclusions

In this paper, we proposed a hybrid variational model which takes advantages of the
wavelet shrinkage and the total variation model. An iterative algorithm based on the al-
ternating minimization direction idea was then presented to minimize the hybrid model.
The strong convergence of the proposed algorithm was carefully proved. Finally, vari-
ous numerical results were reported to exhibit the performance of the new model and it
is rather clear that this model can recover better details than the usual ROF model and
avoids efficiently the Gibbs oscillation of the wavelet shrinkage method. Moreover, this
model might be extended to the de-convolution case though one needs extra efforts on
the numerical optimization issue. We leave this for interested readers.
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