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Abstract. Discontinuous Galerkin (DG) methods are a class of finite element methods
using discontinuous basis functions, which are usually chosen as piecewise polynomi-
als. Since the basis functions can be discontinuous, these methods have the flexibility
which is not shared by typical finite element methods, such as the allowance of ar-
bitrary triangulation with hanging nodes, less restriction in changing the polynomial
degrees in each element independent of that in the neighbors (p adaptivity), and local
data structure and the resulting high parallel efficiency. In this paper, we give a general
review of the local DG (LDG) methods for solving high-order time-dependent partial
differential equations (PDEs). The important ingredient of the design of LDG schemes,
namely the adequate choice of numerical fluxes, is highlighted. Some of the applica-
tions of the LDG methods for high-order time-dependent PDEs are also be discussed.
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1 Overview

1.1 Brief introduction of the discontinuous Galerkin method

The discontinuous Galerkin (DG) method that we discuss in this paper is a class of finite
element methods using a discontinuous piecewise polynomial space for the numerical
solution and the test functions in the spatial variables, coupled with explicit or implicit
nonlinearly stable high order time discretization. These methods have found their way
into the main stream of computational fluid dynamics and other areas of applications.

The first DG method was introduced in 1973 by Reed and Hill [77], in the framework
of neutron transport, i.e. a time independent linear hyperbolic equation. It was later
developed for solving nonlinear hyperbolic conservation laws with first derivatives by
Cockburn et al. in a series of papers [29,35,37,39], in which they have established a frame-
work to easily solve nonlinear time dependent problems, such as the Euler equations in
compressible gas dynamics, using explicit, nonlinearly stable high order Runge-Kutta
time discretizations [85] and DG discretization in space with exact or approximate Rie-
mann solvers as interface fluxes and total variation bounded (TVB) nonlinear limiters [82]
to achieve non-oscillatory properties for strong shocks.

Since the basis functions can be discontinuous, the DG methods have certain flexibil-
ity and advantage, such as,

• It can be easily designed for any order of accuracy. In fact, the order of accuracy can
be locally determined in each cell.

• It is easy to handle complicated geometry and boundary conditions. It can be used
on arbitrary triangulations, even those with hanging nodes.

• It is local in data communications. The evolution of the solution in each cell needs
to communicate only with its immediate neighbors, regardless of the order of ac-
curacy. The methods have high parallel efficiency, usually more than 99% for a
fixed mesh, and more than 80% for a dynamic load balancing with adaptive meshes
which change often during time evolution, see, e.g. [12, 78].

• There is provable cell entropy inequality and L2 stability, for arbitrary scalar equa-
tions in any spatial dimension and any triangulation, for any order of accuracy,
without limiters [60].

• It is at least (k+ 1
2)-th order accurate, and often (k+1)-th order accurate in L2 norm

for smooth solutions when piecewise polynomials of degree k are used, regardless
of the structure of the meshes.

• It is flexible to h-p adaptivity. A very good example to illustrate the capability of
the DG method in h-p adaptivity, efficiency in parallel dynamic load balancing, and
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good resolution properties is the successful simulation of the Rayleigh-Taylor flow
instabilities in [78].

The DG method has found rapid applications in such diverse areas as aeroacoustics,
electro-magnetism, gas dynamics, granular flows, magneto-hydrodynamics, meteorol-
ogy, modeling of shallow water, oceanography, oil recovery simulation, semiconductor
device simulation, transport of contaminant in porous media, turbomachinery, turbulent
flows, viscoelastic flows and weather forecasting, among many others. For a detailed
description of the method as well as its implementation and applications, we refer to the
lecture notes [26, 84], the survey paper [34], and other papers in that Springer volume,
which contains the conference proceedings of the First International Symposium on DG
Methods held at Newport, Rhode Island in 1999. The extensive review paper [40] is also a
good reference for many details. More recently, there are at least four books [58,63,68,79]
covering different aspects of the DG method. There are also three special journal is-
sues [41,42,46] devoted to the DG method, which contain many interesting papers in the
development of the method in all aspects including algorithm design, analysis, imple-
mentation and applications.

1.2 Development of the DG method for high order partial differential
equations

In this paper we mainly discuss a class of DG methods for solving time dependent partial
differential equations (PDEs) with higher derivatives, which are termed local DG (LDG)
methods. The idea of LDG methods is to suitably rewrite a higher order PDE into a
first order system, then apply the DG method to the system. A key ingredient for the
success of such methods is the correct design of interface numerical fluxes. These fluxes
must be designed to guarantee stability and local solvability of all the auxiliary variables
introduced to approximate the derivatives of the solution.

The first LDG method was designed to solve a convection diffusion equation (with
second derivatives) by Cockburn and Shu [38]. Their work was motivated by the suc-
cessful numerical experiments of Bassi and Rebay [10] for the compressible Navier-Stokes
equations. The LDG method is in the same form as the general DG spatial discretization
used for purely convective non-linear systems, with a different guiding principle for the
choice of the numerical fluxes. Of course, it is efficient to use explicit Runge-Kutta time
discretizations for convection diffusion problems only if the convection is actually dom-
inant. We briefly discuss the issue of time discretization in Section 6. Later, Yan and Shu
developed a LDG method for a general KdV type equation with third order derivatives
in [104], and they generalized the LDG method to PDEs with fourth and fifth spatial
derivatives in [105]. Levy, Shu and Yan [67] developed LDG methods for nonlinear dis-
persive equations that have compactly supported traveling wave solutions, the so-called
“compactons”. More recently, Eskilsson and Sherwin [50–52] presented discontinuous
spectral element methods for simulating 1D linear Boussinesq-type equations, dispersive
shallow water systems and 2D Boussinesq equations. Xu and Shu further generalized the
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LDG method to solve a series of nonlinear wave equations [96–99]. LDG methods have
been generalized to transport equations [4,47], three-dimensional shallow water flow [3]
and Richards’ equation [69, 70]. There is also recent work in developing LDG methods
for the model problems in phase transition [57], porous medium equation [90, 109] and
singularly perturbed problems [95].

There is a lot of recent research on LDG discretizations for second order elliptic equa-
tions. Recent development and analysis of the LDG methods for elliptic equations can
be found in, e.g., [19–22, 24, 44, 45]. LDG methods for the Stokes system were introduced
in [33]. The LDG methods for linearized incompressible fluid flow were presented and
reviewed in [30–32, 81]. The minimal dissipation LDG method for convection-diffusion
or diffusion problems was analyzed in [27]. In [13] Burman and Stamm considered the
minimal stabilization to the case of the LDG methods in a mixed form. Preconditioning
techniques for solving the linear system of LDG method were considered in [23, 61, 62].
Bustinza and Gatica presented and analyzed a LDG method for a class of nonlinear dif-
fusion problems with mixed boundary conditions in [15, 16]. The residual-based reliable
a posteriori error estimate for the LDG approximations of linear and nonlinear diffusion
problems in polygonal regions was proved in [17]. Later, Bustinza analyzed the main fea-
tures of the LDG method applied to nonlinear boundary value problems in the plane [14].
More recently, the coupling of LDG and boundary element methods was considered to
solve a class of non-linear exterior transmission problems in the plane [18].

The LDG method can retain the flexibility of the DG method since the auxiliary vari-
ables can be locally eliminated. However, practitioners are sometimes unhappy with
these auxiliary variables, since they may increase the complexity and computational cost
of the method, and they expand the effective stencil of the method after the elimination of
the auxiliary variables. An alternative method for solving second order convection diffu-
sion equations is the DG method of Baumann and Oden [11], see also [75]. This method
does not need the introduction of auxiliary variables, relying instead on penalty terms at
cell boundaries to achieve stability. However, this method does not achieve the optimal
(k+1)-th order of accuracy in L2 norm when piecewise polynomials of degree k is used
(this accuracy degeneracy is well known for even k and is also shown to exist for odd
k recently in [56]). Also, it does not seem straight-forward to generalize this method to
nonlinear PDEs with higher order spatial derivatives. Another class of related methods,
mostly for elliptic problems with even-order leading derivatives and without time, is the
class of interior penalty (IP) methods, see for example Baker [9], and also [6, 7]. The IP
methods use penalty terms, which are typically proportional to the jumps of the solution
and are added to all interior cell interfaces for stability.

More recently, van Leer and Nomura [88] (see also van Raalte and van Leer [89])
and Gassner et al. [54] proposed new DG formulations for the diffusion equations. They
use twice the integration by parts for the diffusion term, and either an L2 projection of
the discontinuous piecewise polynomial over two neighboring cells into a continuous,
single polynomial, or a suitable Riemann solver for the diffusion equation, that is, exact
solutions for the diffusion equation with a step function Riemann initial data, to provide
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interface values of the solution derivative resulting from the integration by parts. The
DG schemes in [88] and [54] do not need to use auxiliary variables as in LDG method,
however the L2 projection procedure might be cumbersome for arbitrary triangulations
in multi-dimensions, especially for non-conforming meshes with hanging nodes, while
the Riemann solver based approach might be difficult to be generalized to equations with
higher order spatial derivatives. In [1], Adjerid and Temimi introduced a DG method for
solving high order ordinary differential equations (ODEs). Their method uses repeated
integrations by parts with taking all the numerical fluxes from the left.

The method designed by Cheng and Shu in [25] also uses repeated integration by
parts, and relies on suitably chosen numerical fluxes for all derivatives of the numerical
solution up to one order lower than the order of the PDE. Advantages of this approach
in comparison with the IP type methods include its automatic local conservation, and its
ability to design stable DG methods for wave type PDEs with odd-order leading deriva-
tives such as the KdV equations. In [25], a framework of designing DG schemes that
work for general time dependent PDEs with higher order spatial derivatives were de-
veloped, by carefully choosing the numerical fluxes to ensure provable stability. Similar
to [1, 54, 88, 89], the methods in [25] also depend on repeated integration by parts; and
similar to [1], the methods also depend on the choice of numerical fluxes at the cell inter-
faces. However, since the PDEs contain possibly nonlinear higher order derivative terms,
the simple choice of taking the numerical fluxes always from the left does not work and a
carefully designed set of numerical fluxes for different PDEs to ensure stability is essen-
tial.

Another DG method for solving second order diffusion problems is introduced by
Liu and Yan in [72], which the authors called the direct discontinuous Galerkin (DDG)
method. Unlike the traditional LDG method, the DDG method is based on a direct weak
formulation for the parabolic equation in each computational cell, and an inter-cell com-
munication via the numerical flux ûx. A general numerical flux formula for the solution
derivative is proposed. In comparison with the DG methods in [1, 25, 54, 88], which rely
on repeated integration by parts for the diffusion term so that interface values can be
imposed for both the solution and its derivatives, the DDG method in [72] relies on the
standard weak formulation for parabolic equations with integration by parts only once,
hence the numerical flux is defined only for the solution derivative, however this numer-
ical flux depends on the jumps of all the derivatives of the numerical solution at the cell
interface. Error estimates are provided in [72]. However, it is not clear how this method
can be generalized to higher order PDEs.

1.3 Outline of the paper

In this paper, we give a general review of the LDG methods for higher order time-
dependent PDEs. To set up the necessary background, the essential idea of the DG
scheme for hyperbolic conservation laws is explained in Section 2. In Section 3 we de-
scribe the LDG method for the diffusion equations. We start with the simple one dimen-
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sional scalar heat equation and explain the difficulty in generalizing the DG method to
PDEs with higher order spatial derivatives. Then we remark on the procedure to ex-
tend the algorithm to handle nonlinearity, systems, and multi-space dimensions. Some
applications are also shown. In Section 4, we generalize the LDG method to dispersive
equations. Some additional topics related to the LDG method are discussed in Section 5.
In Section 6, we discuss time discretization issues. Finally, in Section 7, we mention a few
topics on LDG schemes for PDEs with high order derivatives.

2 The DG method for hyperbolic conservation laws

A simple example to illustrate the essential ideas of DG method is the scalar one-dimensional
conservation law equation

ut+ f (u)x =0, x∈ [a,b]. (2.1)

Let a = x 1
2
< x 3

2
< ···< xN+ 1

2
= b be a partition of I = [a,b]. We denote the mesh by Ij =

[xj− 1
2
,xj+ 1

2
], for j =1,··· ,N. The center of the cell is xj =(xj− 1

2
+xj+ 1

2
)/2 and ∆xj = xj+ 1

2
−

xj− 1
2
. To simplify the notation, we still use u to denote the numerical solution. If we

multiply (2.1) by an arbitrary test function v, integrate over the interval Ij, and integrate
by parts, we get the weak formulation

∫

Ij

utvdx−
∫

Ij

f (u)vxdx+ f (uj+ 1
2
)vj+ 1

2
− f (uj− 1

2
)vj− 1

2
=0. (2.2)

Notice that now both the solution u and the test function v are piecewise polynomials of
degree at most k. We denote by V∆x the space of polynomials of degree up to k in each
cell Ij, i.e.

V∆x ={v : v∈Pk(Ij) for x∈ Ij, j=1,··· ,N}. (2.3)

With this choice, there is an ambiguity in (2.2) in the last two terms involving the bound-
ary values at xj+ 1

2
, as both the solution u and the test function v are discontinuous at these

boundary points. One should design these terms so that the resulting numerical method
is stable and accurate. We denote u+

j+ 1
2

and u−
j+ 1

2

the values of u at xj+ 1
2
, from the right

cell Ij+1, and from the left cell Ij, respectively. The boundary terms are then handled as
follows.

• Replace the boundary terms f (uj± 1
2
) by single valued numerical fluxes f̂ j± 1

2
=

f̂ (u−
j± 1

2

,u+
j± 1

2

). These fluxes in general depend both on the left limit and on the

right limit. The idea is to treat these terms by an upwinding mechanism (informa-
tion from characteristics), borrowed from successful high resolution finite volume
schemes. For the equation (2.1), the flux f̂ j+ 1

2
is taken as a monotone numerical

flux, i.e. it is Lipschitz continuous in both arguments, consistent ( f̂ (u,u) = f (u)),



Y. Xu and C.-W. Shu / Commun. Comput. Phys., 7 (2010), pp. 1-46 7

non-decreasing in the first argument and non-increasing in the second argument.
Examples of monotone fluxes which are suitable for discontinuous Galerkin meth-
ods can be found in, e.g., [37]. We could for example use the simple Lax-Friedrichs
flux

f̂ (u−,u+)=
1

2
( f (u−)+ f (u+)−α(u+−u−)), α=max| f ′(u)|,

where the maximum is taken over a relevant range of u.

• Replace the test function v at the boundaries by v−
j+ 1

2

and v+
j− 1

2

.

The scheme is then given by: Find u∈V∆x, such that ∀v∈V∆x, we have

∫

Ij

utvdx−
∫

Ij

f (u)vxdx+ f̂ j+ 1
2
v−

j+ 1
2

− f̂ j− 1
2
v+

j− 1
2

=0. (2.4)

The resulting method of the lines ODE (2.4) is then discretized by the nonlinearly stable
high order Runge-Kutta time discretizations [85]. The most popular scheme in this class
is the following third order Runge-Kutta method for solving

u̇= L(u,t), (2.5)

where L(u,t) is a spatial discretization operator (it does not need to be, and often is not,
linear):

u(1) =un+∆tL(un,tn),

u(2) =
3

4
un+

1

4
u(1)+

1

4
∆tL(u(1),tn+∆t), (2.6)

un+1 =
1

3
un+

2

3
u(2)+

2

3
∆tL(u(2),tn+

1

2
∆t).

3 The LDG method for diffusion equations

In this section, we discuss the development of the LDG methods for the diffusion equa-
tions, such as heat equation, convection diffusion equations, biharmonic equation, and
Cahn-Hilliard equations, etc.

3.1 Difficulty in the generalization of DG to PDEs with higher order spatial
derivatives

For equations with higher order spatial derivatives, it is more difficult to design DG
methods. The solution space, which consists of piecewise polynomials which are dis-
continuous at the element interfaces, is more unnatural for approximating higher order
derivatives.
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A naive generalization of the DG method to a PDE with higher spatial derivatives
could have disastrous results. Consider, as a simple example, the heat equation

ut−uxx =0, (3.1)

for x∈ [0,2π] with periodic boundary conditions and with an initial condition u(x,0) =
sin(x). A straightforward generalization of the DG method from the hyperbolic equation
ut+ f (u)x = 0 is to write down the same scheme and replace f (u) by −ux everywhere.
Namely, find u∈V∆x such that, for all test functions v∈V∆x,

∫

Ij

utvdx+
∫

Ij

uxvxdx−ûx j+ 1
2
v−

j+ 1
2

+ûx j− 1
2
v+

j− 1
2

=0. (3.2)

Lacking an upwinding consideration for the choice of the flux ux and considering that
diffusion is isotropic, a natural choice for the flux is the central flux

ûx j+ 1
2
=

1

2
((ux)

+
j+ 1

2

+(ux)
−
j+ 1

2

). (3.3)

Fig. 1 [108] shows the numerical solution with 40 and 320 cells versus the exact solution,
for the two cases k = 1 and 2 (piecewise linear and piecewise quadratic cases) at t = 0.7.
This application of the DG method directly to the heat equation with second derivatives
could yield a method which behaves nicely in the computation, in the sense that a grid
refinement study seems to produce a numerically convergent solution, but is mathemat-
ically weakly unstable and has O(1) errors to the exact solution in numerical tests (hence
it looks “inconsistent”) [40, 83, 108].

A DG method which was designed in [10, 38] is to first rewrite the equation (3.1) into
a first order system

ut−qx =0, q−ux =0, (3.4)

then formally use the same DG method for the convection equation to solve (3.4), result-
ing in the following scheme: Find u, q∈V∆x, ∀v, w∈V∆x, such that

∫

Ij

utvdx+
∫

Ij

qvxdx− q̂j+ 1
2
v−

j+ 1
2

+ q̂j− 1
2
v+

j− 1
2

=0,

∫

Ij

qwdx+
∫

Ij

uwxdx−ûj+ 1
2
w−

j+ 1
2

+ûj− 1
2
w+

j− 1
2

=0.
(3.5)

However, there is no longer a upwinding mechanism or characteristics to guide the de-
sign of the fluxes ûj+ 1

2
and q̂j+ 1

2
. The crucial part in designing a stable and accurate algo-

rithm (3.5) is a correct design of these fluxes. In [38], criteria are given for these fluxes to
guarantee stability, convergence and a sub-optimal error estimate of order k in L2 norm
for piecewise polynomials of degree k. The (most natural) central fluxes

ûj+ 1
2
=

1

2
(u+

j+ 1
2

+u−
j+ 1

2

), q̂j+ 1
2
=

1

2
(q+

j+ 1
2

+q−
j+ 1

2

) (3.6)
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Figure 1: Reproduced from [108]. The “inconsistent” discontinuous Galerkin method (3.2) applied to the heat
equation (3.1) with an initial condition u(x;0)= sin(x). t = 0.7. 160 cells. Third order Runge-Kutta in time.
Solid line: the exact solution; Dashed line and squares symbols: the computed solution at the cell centers. Left:
k=1; Right: k=2.

would satisfy these criteria and give a scheme which is indeed sub-optimal in L2 norm
in the order of accuracy for odd k (i.e. the accuracy is order k rather than the expected
order k+1 in L2 norm for odd k). This deficiency, however, can be removed by adopting
another choice of fluxes as proposed in [38]

ûj+ 1
2
=u+

j+ 1
2

, q̂j+ 1
2
=q−

j+ 1
2

, (3.7)

i.e. we alternatively take the left and right limits for the fluxes in u and q (we could of
course also take the pair u−

j+ 1
2

and q+
j+ 1

2

as the fluxes). Notice that the evaluation of (3.7)

is simpler than that of the central fluxes in (3.6), and this easily generalizes to multi space
dimensions on arbitrary triangulations. The accuracy now becomes the optimal order
k+1 in L2 norm for both even and odd k. The appearance of the auxiliary variable q
is superficial: when a local basis is chosen in cell Ij then q is eliminated by the second
equation in (3.5) with the inversion of a small mass matrix. To be more specific, the
second equation in (3.5) would give us q= Bu for a block banded matrix B, which can be
substituted into the first equation in (3.5) to obtain a scheme (ODE) for u which takes a
similar form as that for the convection equation. This is a big advantage of the scheme
over the traditional “mixed methods”, and it is the reason that the scheme is termed LDG
method in [38]. Even though the auxiliary variable q can be locally eliminated, it does
approximate the derivative of the solution u to the same order of accuracy, thus matching
the advantage of the traditional “mixed methods” that the solution and its derivative are
approximated to the same order of accuracy.

For illustration purpose we show in Table 1 [108] the L2 and L∞ errors and numeri-
cally observed orders of accuracy, for both u and q, for the two cases k = 1 and 2 (piece-
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Table 1: Reproduced from [108]. L2 and L∞ errors and orders of accuracy for the LDG method (3.5) with fluxes
(3.7) applied to the heat equation (3.1) with an initial condition u(x,0)=sin(x), t=1. Third order Runge-Kutta
in time with a small ∆t so that time error can be ignored.

k=1 k=2

∆x L2 error order L∞ error order L2 error order L∞ error order

2π/20, u 1.58E-03 — 6.01E-03 — 3.98E-05 — 1.89E-04 —
2π/20, q 1.58E-03 — 6.01E-03 — 3.98E-05 — 1.88E-04 —

2π/40, u 3.93E-04 2.00 1.51E-03 1.99 4.98E-06 3.00 2.37E-05 2.99
2π/40, q 3.94E-04 2.00 1.51E-03 1.99 4.98E-06 3.00 2.37E-05 2.99

2π/80, u 9.83E-05 2.00 3.78E-04 2.00 6.22E-07 3.00 2.97E-06 3.00
2π/80, q 9.83E-05 2.00 3.78E-04 2.00 6.22E-07 3.00 2.97E-06 3.00

2π/160, u 2.46E-05 2.00 9.45E-05 2.00 7.78E-08 3.00 3.71E-07 3.00
2π/160, q 2.46E-05 2.00 9.45E-05 2.00 7.78E-08 3.00 3.71E-07 3.00

wise linear and piecewise quadratic cases) to t=1. Clearly (k+1)-th order of accuracy is
achieved for both odd and even k and also the same order of accuracy is achieved for q
which approximates ux. We thus obtain the advantage of mixed finite element methods
in approximating the derivatives of the exact solution to the same order of accuracy as
the solution themselves, yet without additional storage or computational costs for the
auxiliary variable q.

3.2 The LDG method for the convection diffusion equations

In the following we discuss the LDG method for the convection diffusion equations in
[38]

ut+
d

∑
i=1

fi(u)xi
−

d

∑
i=1

d

∑
j=1

(aij(u)uxj
)xi

=0, d≥1, (3.8)

with an initial condition
u(x1,··· ,xd,0)=u0(x1,··· ,xd), (3.9)

and periodic boundary conditions, where fi(u) and aij(u) are arbitrary (smooth) nonlin-
ear functions and aij(u) are entries of a symmetric and semi-positive definite matrix. A
symmetric and semi-positive definite matrix has a square root, i.e. there exists a symmet-
ric and semi-positive definite matrix bij(u) such that

aij(u)= ∑
1≤l≤d

bil(u)blj(u), (3.10)

and we denote

glj(u)=
∫ u

blj(τ)dτ. (3.11)
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To define the LDG method, we rewrite the equation (3.8) as a first order system:

ut+
d

∑
i=1

fi(u)xi
−

d

∑
i=1

( d

∑
l=1

bil(u)ql

)

xi

=0, (3.12a)

ql−
d

∑
j=1

(glj(u))xj
=0, l =1,··· ,d. (3.12b)

Notice that the usage of the square root matrix (3.10) helps the analysis, however in
practical computation people often ignore it and define the auxiliary variable simply as
ql = uxl

. For an arbitrary triangulation, let Th denote a tessellation of Ω with shape-
regular elements K. Let Γ denote the union of the boundary faces of elements K∈Th, i.e.
Γ =∪K∈Th

∂K, and Γ0 = Γ\∂Ω. Let Pk(K) be the space of polynomials of degree at most
k≥0 on K∈Th. We denote the finite element space by

Wh ={v : v|K ∈Pk(K) for ∀K∈Th}. (3.13)

In order to describe the flux functions we need to introduce some notations. We
choose a fixed vector β which is not parallel with any normals of element boundaries.
This is possible because there are only finitely many element boundary normals for any
given mesh, including meshes with possible curved edges since we are concerned only
with the normals at the quadrature points along element edges. For example, we can
choose β =(1,1) for the rectangular mesh. For each face e, we use this fixed vector β to
uniquely define the “left” and “right” elements KL and KR which share the same face e.
The “right” side is the side at the end of the arrow of the normal n with n·β >0 and the
“left” side is naturally the opposite side. See Fig. 2 for an illustration. If ψ is a function
on KL and KR, but possibly discontinuous across e, let ψL denote (ψ|KL

)|e and ψR denote
(ψ|KR

)|e, the left and right trace, respectively.
Now we can use the LDG method to approximate Eq. (3.12). Find u, q1,··· , qd ∈W∆x,

such that, ∀ρ, ψ1,··· , ψd∈W∆x,

∫

K
(uh)tρdx−

d

∑
i=1

∫

K
fi(u)ρxi

dx+
d

∑
i=1

∫

K
(

d

∑
l=1

bil(u)ql)ρxi
dx

+
∫

∂K
f̂ (uL,uR,n)ρds−

d

∑
i=1

∫

∂K

( d

∑
l=1

b̂il(u)q̂lni

)
ρds=0, (3.14a)

∫

K
qlψldx+

d

∑
j=1

∫

K
glj(u)(ψl)xj

dx−
d

∑
j=1

∫

∂K
ĝlj(u)njψlds=0, l =1,··· ,d, (3.14b)

where n = (n1,··· ,nd) denotes the outward unit normal to the element K at x∈ ∂K. The
“hat” terms in (3.14) are the numerical fluxes. It turns out that we can take the simple
choices such that

b̂il(u)=
gil(uR)−gil(uL)

uR−uL
, ĝlj(u)= glj(uL), q̂l =qR

l , (3.15)
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Figure 2: Illustration of the definition of “right” and “left” sides determined by a pre-determined vector β.

and f̂ (uL,uR,n) is any one-dimensional monotone flux which is conservative and consis-
tent with the nonlinearity ∑

d
i=1 fi(u)ni. Now the algorithm is well defined.

Remark 3.1. Choice for the numerical fluxes
The numerical fluxes at the boundary terms should be designed based on different guid-
ing principles for different PDEs to ensure stability. For example, upwinding should be
used as a guideline for odd derivatives which correspond to waves, and symmetric treat-
ment, such as an alternating choice of the fluxes for a quantity and its derivative, should
be used for even derivatives.

Remark 3.2. L2 stability

For the scheme (3.14) with the numerical fluxes (3.15), we have the following result on
cell entropy inequality [38]:

Proposition 3.1 (cell entropy inequality). There exist conservative numerical entropy fluxes

Ψ̂nK,K such that the solution to the scheme (3.14)-(3.15) satisfies

d

dt

∫

K

(
u2(x,t)

2

)
dx+

∫

∂K
Ψ̂nK,Kds≤0. (3.16)

Here “conservative” fluxes refer to the fact that Ψ̂nK,K =−Ψ̂n′
K ,K′ on the edge shared by the two

elements K and K′.

The L2 stability of the method is then a trivial corollary, by summing up the cell en-
tropy inequalities over K and assuming periodic boundary conditions [38]:
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Corollary 3.1 (L2 stability). The solution to the scheme (3.14)-(3.15) satisfies the L2 stability

d

dt

∫

Ω

(
u2(x,t)

2

)
dx≤0. (3.17)

The cell entropy inequality and L2 stability can be proved in any spatial dimension
and any triangulation, for any order of accuracy. Such results are typical for LDG meth-
ods for various nonlinear PDEs with higher order spatial derivatives.

Remark 3.3. Error estimates

The optimal O(hk+1) error estimates in L2 norm can be obtained on tensor product meshes
and polynomial spaces for the smooth solution of Eq. (3.8). For general triangulations and
piecewise polynomials of degree k, a sub-optimal error estimate of O(hk) in L2 norm can
be obtained [38, 100].

3.3 Applications of the LDG method for other diffusion equations

3.3.1 Bi-harmonic equations

An LDG scheme for solving the time dependent convection bi-harmonic equation

ut+
d

∑
i=1

fi(u)xi
+

d

∑
i=1

(ai(uxi
)uxixi

)xixi
=0, (3.18)

where fi(u) and ai(q)≥ 0 are arbitrary functions, was designed in [105]. The numerical
fluxes are chosen following the same “alternating fluxes” principle similar to the second
order convection diffusion equation (3.8), see (3.15). A cell entropy inequality and the
L2 stability of the LDG scheme for the nonlinear equation (3.18) can be proved [105],
which do not depend on the smoothness of the solution of (3.18), the order of accuracy
of the scheme, or the triangulation. In [48], optimal error estimates in L2 norm were
obtained for fourth-order linear biharmonic equations in one and multi-dimensions for
both Cartesian and triangular meshes. The analysis in [48] can also be extended to higher
even-order equations and the linearized Cahn-Hilliard type equations.

We show the results of the linear bi-harmonic equation (3.18) in [105]:

ut+uxxxx =0, (3.19)

with initial condition u(x,0)= sin(x) and periodic boundary conditions. The exact solu-
tion is given by u(x,t) = e−t sin(x). The numerical errors and order of accuracy can be
found in Table 2. We clearly observe an accuracy of ∆xk+1 when piecewise Pk elements
are used.
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Table 2: Reproduced from [105]. ut+uxxxx = 0. u(x,0) = sin(x). Periodic boundary conditions. L∞ errors.
Uniform meshes with N cells. LDG methods with k=0,1,2,3. t=1.

k N=10 N=20 N=40 N=80
error error order error order error order

0 1.1125E-01 5.4352E-02 1.03 2.7001E-02 1.00 1.3478E-02 1.00
1 2.2038E-02 5.2262E-03 2.07 1.3119E-03 1.99 3.2831E-04 1.99
2 1.1183E-03 1.3512E-04 3.04 1.6988E-05 2.99 2.1265E-06 2.99
3 6.1004E-05 2.3484E-06 4.69 1.4022E-07 4.06 8.7476E-09 4.00

3.3.2 The Kuramoto-Sivashinsky type equations

In [99], an LDG method has been developed to solve the Kuramoto-Sivashinsky type
equations

ut+ f (u)x−(a(u)ux)x+(r′(u)g(r(u)x)x)x+(s(ux)uxx)xx =0, (3.20)

where f (u), a(u)≥0, r(u), s(p)≥0 and g(p) are arbitrary (smooth) nonlinear functions.
The Kuramoto-Sivashinsky equation

ut+uux+αuxx+βuxxxx =0, (3.21)

where α and β are constants. The Kuramoto-Sivashinsky equation, a special case of (3.20),
is a canonical evolution equation which has attracted considerable attention over the last
decades. When the coefficients α and β are both positive, its linear terms describe a
balance between long wave instability and short-wave stability and nonlinear terms pro-
vide a mechanism for energy transfer between wave modes. The LDG method developed
in [99] can be proved to satisfy a cell entropy inequality and is therefore L2 stable, for the
general nonlinear equation (3.20). The LDG scheme is used in [99] to simulate chaotic
solutions of (3.21). Figs. 3 and 4 are some of the simulation results of chaotic solutions
in [99].

3.3.3 The Cahn-Hilliard equation

LDG methods have been designed in [93] for solving the Cahn-Hilliard equation in a
bounded domain Ω∈Rd (d≤3)

ut =∇·
(

b(u)∇
(
−γ∆u+Ψ′(u)

))
, (3.22)

and for solving the Cahn-Hilliard system

{
ut =∇·(B(u)∇ω),

ω=−γ∆u+DΨ(u),
(3.23)

where {DΨ(u)}l =
∂Ψ(u)

∂ul
and γ is a positive constant. Here b(u) is the non-negative diffu-

sion mobility and Ψ(u) is the homogeneous free energy density for the scalar case (3.22).
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Figure 3: Reproduced from [99]. The chaotic solution of the Kuramoto-Sivashinsky equation. Periodic boundary
condition in [0,32π], P2 elements with two different meshes using N =300 and N =600 uniform cells.
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Figure 4: Reproduced from [99]. The chaotic solution of the Kuramoto-Sivashinsky equation with the Gaussian

initial condition. Periodic boundary condition in [-16,16], P2 elements with two different meshes using N =300
and N =600 uniform cells.
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P0, 40×40 P1, 40×40

P0, 80×80 P1, 80×80

Figure 5: Reproduced from [93]. The contours of u(x,t) for the Cahn-Hilliard equation (3.22) when t=8×10−5.

P0 and P1 elements on the uniform mesh with 40×40 and 80×80 cells.

t = 0 t = 2×10-6 t = 4×10-6

t = 8×10-6 t = 1.6×10-5 t = 3.2×10-5

t = 6.4×10-5 t = 1.28×10-4 t = 2.56×10-4

Figure 6: Reproduced from [93]. The contours evolution of u(x,t) for the Cahn-Hilliard equation (3.22) at

different time from a randomly perturbed initial condition with P1 elements on the uniform mesh with 80×80
cells.
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u1(t=0) u1(t=8E-5)

u2(t=0) u2(t=8E-5)

u3(t=0) u3(t=8E-5)

Figure 7: Reproduced from [93]. The contours of u1(x,t), u2(x,t) and u3(x,t) for the Cahn-Hilliard system

(3.23) when t=8×10−5. P1 elements on the uniform mesh with 80×80 cells.

For the system case (3.23), B(u) is the symmetric positive semi-definite mobility matrix
and Ψ(u) is the homogeneous free energy density. The proof of the energy stability for
the LDG scheme is given for the general nonlinear solutions. Many simulation results
are given in [93]. The numerical results for two dimensional Cahn-Hilliard equation and
Cahn-Hilliard system are shown in Figs. 5, 6 and 7.
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In [94], a class of LDG methods are designed for the more general Allen-Cahn/Cahn-
Hilliard (AC/CH) system in Ω∈Rd (d≤3)

{
ut =∇·[b(u,v)∇(Ψu(u,v)−γ∆u)],

ρvt =−b(u,v)[Ψv(u,v)−γ∆v],
(3.24)

where γ, ρ are given constants. The mobility, b(u,v), is assumed to be nonnegative and to
vanish at the “pure phases”. The homogeneous free energy, Ψ, is assumed to contain two
terms, one for entropy contribution and the other for energy mixing. Energy stability of
the LDG schemes is again proved. Simulation results are provided in [94].

3.3.4 The surface diffusion of graphs and Willmore flow of graphs equations

In [103], we designed the LDG method for the surface diffusion of graphs

ut+∇·

(
Q

(
I−

∇u⊗∇u

Q2

)
∇H

)
=0, (3.25)

and the equation of Willmore flow of graphs

ut+Q∇·

(
1

Q

(
I−

∇u⊗∇u

Q2

)
∇(QH)

)
−

1

2
Q∇·

(
H2

Q
∇u

)
=0, (3.26)

where Q is the area element

Q=
√

1+|∇u|2, (3.27)

and H is the mean curvature of the domain boundary Γ

H =∇·

(
∇u

Q

)
. (3.28)

There are general application areas of these models, such as body shape dynamics, sur-
face destruction, computer data processing, image processing and so on. These two equa-
tions are both highly nonlinear fourth-order PDEs. L2 stability and energy stability are
proven for general solutions.

3.4 Porous medium equation

An LDG method for solving the porous medium equation

ut =(um)xx, m≥1 (3.29)

is designed in [109]. This equation often occurs in nonlinear problems of heat and mass
transfer, combustion theory, and flow in porous media, where u is either a concentration
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or a temperature required to be nonnegative. This equation is a degenerate parabolic
equation since it degenerates at the points where u=0. A nonnegativity preserving lim-
iter to satisfy the physical nature of the porous medium equation is presented in [109].
The nonnegativity of the LDG method for P0 element is proved if the initial solution is
nonnegative within certain restriction on the parameters of the numerical flux. Extensive
numerical results are given to show the capability of the LDG method in [109].

4 The LDG method for dispersive equations

In this section, we discuss the development of the LDG methods for the dispersive
equations, such as KdV-type equations, Kadomtsev-Petviashvili equation and Zakharov-
Kuznetsov equation, etc.

4.1 The LDG method for the KdV-type equations

We present the LDG method for the KdV-type equations in [104]:

ut+ f (u)x+(r′(u)g(r(u)x)x)x =0 (4.1)

with an initial condition
u(x,0)=u0(x) (4.2)

and periodic boundary conditions. Here f (u), g(q) are arbitrary (smooth) nonlinear func-
tions. Notice that the assumption of periodic boundary conditions is for simplicity only
and is not essential: the method can be easily designed for non-periodic boundary con-
ditions (see, e.g., [71]).

To define the LDG method, we rewrite Eq. (4.1) as a first order system:

ut+ f (u)x+(r′(u)p)x =0, p−g(q)x =0, q−r(u)x =0. (4.3)

Now we can use the LDG method to approximate Eq. (4.3). Find u, p, q∈V∆x, such that,
∀ρ, φ, ϕ∈V∆x,

∫

Ij

utρdx−
∫

Ij

( f (u)+r′(u)p)ρxdx+( f̂ + r̂′ p̂)j+ 1
2
ρ−

j+ 1
2

−( f̂ + r̂′ p̂)j− 1
2
ρ+

j− 1
2

=0,

∫

Ij

pφdx+
∫

Ij

g(q)φxdx− ĝj+ 1
2
φ−

j+ 1
2

+ ĝj− 1
2
φ+

j− 1
2

=0, (4.4)

∫

Ij

qϕdx+
∫

Ij

r(u)ϕxdx− r̂j+ 1
2
ϕ−

j+ 1
2

+ r̂j− 1
2
ϕ+

j− 1
2

=0.

The numerical fluxes at the boundary terms are taken as

f̂ = f̂ (u−,u+), ĝ= ĝ(q−,q+), p̂= p+, r̂′=
r(u+)−r(u−)

u+−u−
, r̂ = r(u−), (4.5)
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where we have omitted the half-integer indices j+ 1
2 as all quantities in (4.5) are computed

at the same points (i.e. the interfaces between the cells). Here f̂ (u−,u+) and −ĝ(q−,q+)
are monotone fluxes. We remark that the choice for the fluxes (4.5) is not unique. In fact
the crucial part is taking p̂ and r̂ from opposite sides.

Notice that, from the third equation in the scheme (4.4), we can solve q explicitly and
locally (in cell Ij) in terms of u, by inverting the small mass matrix inside the cell Ij. Then,
from the second equation in the scheme (4.4), we can solve p explicitly and locally (in cell
Ij) in terms of q. Thus only u is the global unknown and the auxiliary variables q and p
can be solved in terms of u locally.

Remark 4.1. Choice for the numerical fluxes

The upwinding principle for the numerical flux f̂ (u−,u+) and −ĝ(q−,q+) is essential to
ensure stability for the odd derivative which correspond to waves. For other numerical
fluxes, symmetric treatment is the guiding principle to ensure stability.

Remark 4.2. L2 stability

For the scheme (4.4) with the numerical fluxes (4.5), cell entropy inequality and L2 stabil-
ity can be proved.

Remark 4.3. Error estimates

The sub-optimal O(hk+ 1
2 ) error estimates in L2 norm can be obtained for the smooth

solution of the equation [100, 104]

ut+ f (u)x+uxxx =0. (4.6)

Remark 4.4. Multi-dimensional case

For the general multi-dimensional nonlinear case

ut+
d

∑
i=1

fi(u)xi
−

d

∑
i=1

(
r′i(u)

d

∑
j=1

gij (ri(u)xi)xj

)

xi

=0, d≥1, (4.7)

the LDG scheme can also be designed in the similar way and the cell entropy and L2

stability can be proved in any spatial dimension and any triangulation, for any order of
accuracy in [104]. Error estimates of O(hk) in L2 norm for Pk elements in 2D are obtained
in [100].

In Table 3, we show the classical soliton solution of the nonlinear KdV equation [104]

ut−3u2
x+uxxx =0, (4.8)

with an initial condition u(x,0)=−2sech2(x) for −10≤x≤12. The exact solution is given
by u(x,t)=−2sech2(x−4t). We clearly observe an accuracy of O(hk+1) when piecewise
Pk elements are used.

In [104], this LDG method is used to study the dispersion limit of the Burgers equation

ut+u2
x+εuxxx =0, (4.9)

for which the third derivative dispersion term in (4.1) has a small coefficient which tends
to zero. Fig. 8 show the zero dispersion limit results in [104].



Y. Xu and C.-W. Shu / Commun. Comput. Phys., 7 (2010), pp. 1-46 21

Table 3: Reproduced from [104]. Accuracy results for the KdV equation (4.8). Periodic boundary conditions.
L∞ errors. Uniform meshes with N cells. LDG methods with k=0,1,2,3. t=0.5.

k N=40 N=80 N=160 N=320
error error order error order error order

0 L2 2.5292E-01 1.9098E-01 0.40 1.3019E-01 0.55 7.9780E-02 0.71
L∞ 9.0170E-01 6.8651E-01 0.39 4.6405E-01 0.56 2.8531E-01 0.70

1 L2 2.6512E-02 4.6652E-03 2.50 1.0108E-03 2.20 2.5906E-04 1.96
L∞ 1.4748E-01 3.4625E-02 2.09 1.1840E-02 1.55 3.3239E-03 1.83

2 L2 1.5317E-03 1.8083E-04 3.08 2.2642E-05 2.99 2.8335E-06 2.99
L∞ 1.7486E-02 2.7505E-03 2.66 3.5575E-04 2.95 4.4397E-05 3.00

3 L2 2.0631E-04 1.3981E-05 3.88 8.9054E-07 3.97 5.6029E-08 3.99
L∞ 2.0155E-03 2.1462E-04 3.23 1.4461E-05 3.89 9.1140E-07 3.98
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Figure 8: Reproduced from [104]. Zero dispersion limit of conservation laws. Solutions of Eq. (4.9) and periodic

boundary conditions in [0,1] using P2 elements at t=0.5. Top left: ǫ=10−4 with 300 cells; top right: ǫ=10−5

with 300 cells; bottom left: ǫ=10−6 with 800 cells; bottom right: ǫ=10−7 with 1700 cells.

4.2 The LDG scheme of the Kadomtsev-Petviashvili (KP) and
Zakharov-Kuznetsov (ZK) equation

The KP equation

(ut+6uux+uxxx)x+3σ2uyy =0, (4.10)
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where σ2 =±1, are generalizations of the one-dimensional KdV equations and are im-
portant models for water waves. Because of the x-derivative for the ut term, Eq. (4.10) is
well-posed only in a function space with a global constraint, hence it is difficult to design
an efficient LDG scheme which relies on local operations. This equation is equivalent to

ut+6uux+uxxx+3σ2∂−1
x uyy =0, (4.11)

where the non-local operator ∂−1
x uyy makes the equation well-posed only in the restricted

space

V(R2)=

{
f :
∫

R2
(1+ξ2+

η2

ξ2
)| f̂ (ξ,η)|2dξdη <∞

}
.

We have designed an LDG scheme for (4.10) in [98] by carefully choosing locally sup-
ported bases which satisfy the global constraint needed by the solution of (4.11). We give
the piecewise polynomial basis functions of the space, which satisfy the constraint from
the PDE with a non-local operator and at the same time have the local property of the dis-
continuous Galerkin methods. Details related to the implementation are also described
in [98]. The LDG scheme is L2 stable for the fully nonlinear equation (4.10). Numerical
simulations in Figs. 9 and 10 are performed in [98] for both the KP-I equations (σ2 =−1
in (4.10)) and the KP-II equations (σ2 =1 in (4.10)).

The Zakharov-Kuznetsov equation

ut+(3u2)x+uxxx+uxyy =0 (4.12)

is another generalization of the one-dimensional KdV equations. An LDG scheme is
designed for (4.12) in [98] which is proved to satisfy a cell entropy inequality and to be
L2 stable. An L2 error estimate is given in [100]. Various nonlinear waves have been
simulated by this scheme in [98]. The direct collision of two dissimilar pulses solution is
shown in Fig. 11.

4.3 Applications of the LDG method for other dispersive equations

4.3.1 Fifth order convection dispersion equations

An LDG scheme for solving the following fifth order convection dispersion equation

ut+
d

∑
i=1

fi(u)xi
−

d

∑
i=1

(gi(uxixi
)xixixi

=0, d≥1, (4.13)

where fi(u) and gi(q) are arbitrary functions, was designed in [105]. The numerical fluxes
are chosen following the same upwinding and alternating flux principle similar to the
third order KdV type equations (4.1), see (4.5). A cell entropy inequality and the L2

stability of the LDG scheme for the nonlinear equation (4.13) can be proved [105], which
again do not depend on the smoothness of the solution of (4.13), the order of accuracy of
the scheme, or the triangulation. Stable LDG schemes for similar equations with seventh
or higher derivatives can also be designed along similar lines.



Y. Xu and C.-W. Shu / Commun. Comput. Phys., 7 (2010), pp. 1-46 23

0

2

4

0 10 20 30 40
x

0

10

20

30

40

y

t=0

x

y

0 10 20 30
0

10

20

30

40
t=0

0

2

4

0 10 20 30 40
x

0

10

20

30

40

y

t=1

x

y

0 10 20 30 40
0

10

20

30

40
t=1

0

1

2

3

010203040

x

0

10

20

30

40

y

t=2

x

y

0 10 20 30 40
0

10

20

30

40
t=2

0

1

2

3

0 10 20 30 40
x

0

10

20

30

40

y

t=3

x

y

0 10 20 30 40
0

10

20

30

40
t=3

Figure 9: Reproduced from [98]. Indirect collision of two lump-type pulse of KP-I equation, µ2
1=µ2

2=1, λ1=−1,
λ2=1, x1=10, y1=10, x2=10, y2=30. Periodic boundary condition in both x and y directions in [0,40]×[0,40].
P2 elements with 160×160 uniform cells.
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Figure 10: Reproduced from [98]. A two-phase solution for KP-II equation, with parameters: b =−2, λ=0.4,
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Figure 11: Reproduced from [98]. Direct collision of two dissimilar pulses solution for the ZK equation (4.12).
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4.3.2 The fifth-order KdV type equations

LDG methods for solving the fifth-order KdV type equations

ut+ f (u)x+(r′(u)g(r(u)x)x)x+(s′(u)h(s(u)xx)xx)x =0, (4.14)

where f (u), r(u), g(q), s(u) and h(p) are arbitrary functions, have been designed in [96].
The design of numerical fluxes follows the same lines as that for the KdV type equation
(4.1). A cell entropy inequality and the L2 stability of the LDG scheme for the nonlinear
equation (4.14) can be proved [96], which again do not depend on the smoothness of
the solution of (4.14) and the order of accuracy of the scheme. The LDG scheme is used
in [96] to simulate the solutions of the Kawahara equation, the generalized Kawahara
equation, Ito’s fifth-order mKdV equation, and a fifth-order KdV type equations with
high nonlinearities, which are all special cases of the equations represented by (4.14).

A special case is the Kawahara equation

ut+uux+uxxx−δuxxxxx =0. (4.15)

In Fig. 12, we show the result with the compact initial condition

u0(x)=

{
Acos2(Bx−C) |Bx−C|≤π/2,
0 otherwise.

(4.16)
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Figure 12: Reproduced from [96]. The pulsating multiplet solution of Eq. (4.15) for δ=0.5 in [0,330] using P2

elements with 1500 cells, where A=2, B=1/28 and C =50/28.

4.3.3 The fully nonlinear K(m,n) and K(n,n,n) equations

LDG methods for solving the K(m,n) equations

ut+(um)x+(un)xxx =0, (4.17)

where m and n are positive integers, have been designed in [67]. These K(m,n) equa-
tions were introduced by Rosenau and Hyman in [80] to study the so-called compactons,
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namely the compactly supported solitary waves solutions. For the special case of m = n
with an odd positive integer, it is possible to design LDG schemes which are stable in the
Lm+1 norm. For other cases, LDG schemes can be designed based on a linearized stabil-
ity analysis, which perform well in numerical simulation for the fully nonlinear equation
(4.17).

LDG methods for solving the fifth-order fully nonlinear K(n,n,n) equations

ut+(un)x+(un)xxx+(un)xxxxx =0, (4.18)

where n is a positive integer, have been designed in [96]. The design of numerical fluxes
follows the same lines as that for the K(m,n) equations (4.17). For odd n, stability in
the Ln+1 norm of the resulting LDG scheme can be proved for the nonlinear equation
(4.18) [96]. This scheme is used to simulate compacton propagation in [96].

4.3.4 The KdV-Burgers type (KdVB) equations

LDG methods for solving the KdV-Burgers type (KdVB) equations

ut+ f (u)x−(a(u)ux)x+(r′(u)g(r(u)x)x)x =0, (4.19)

where f (u), a(u), r(u) and g(p) are arbitrary functions, have been designed in [96]. The
design of numerical fluxes follows the same lines as that for the convection diffusion
equation (3.8) and for the KdV type equation (4.1). A cell entropy inequality and the L2

stability of the LDG scheme for the nonlinear equation (4.19) can be proved [96], which
again do not depend on the smoothness of the solution of (4.19) and the order of accuracy
of the scheme. The LDG scheme is used in [96] to study different regimes when one of the
dissipation and the dispersion mechanisms dominates, and when they have comparable
influence on the solution. An advantage of the LDG scheme designed in [96] is that
it is stable regardless of different class of dominant operators (convection, diffusion, or
dispersion).

A special case is the KdV-Burgers equation

ut+εuux−αuxx+βuxxx =0. (4.20)

We fix ε=0.2 and β=0.1, then change α. The results are shown in Fig. 13.

4.3.5 The Ito-type coupled KdV equations

In [99] we have developed an LDG method to solve the Ito-type coupled KdV equations

ut+αuux+βvvx +γuxxx =0,

vt+β(uv)x =0, (4.21)

where α, β and γ are arbitrary constants. An L2 stability is proved for the LDG method.
Simulation for the solution of (4.21) in which u behaves like a dispersive wave solution
and v behaves like a shock wave solution is performed in [99] using the LDG scheme.
Fig. 14 plots the solution u which behaves like a dispersive wave solution, while Fig. 15
plots the solution v which behaves like a shock wave solution.
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Figure 13: Reproduced from [96]. KdVB type solutions at time t = 800, 0≤ x ≤ 150, d = 5, x0 = 50, ε = 0.2
and β=0.1. (a) α=0.5, P1 elements with 320 cells; (b) α=0.05, P1 elements with 320 cells; (c) α=0.01, P1

elements with 320 cells; (d) α=0.005, P1 elements with 320 cells.
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Figure 15: Reproduced from [99]. Numerical results of v for the Ito’s equation (4.21). Periodic boundary
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5 Additional topics of the LDG method

In this section, we discuss some additional topics related to the development of the LDG
methods, including nonlinear Schrödinger equation, integrable model equation for shal-
low water waves and multi-scale problems.

5.1 The nonlinear Schrödinger (NLS) equation

In [97], LDG methods are designed for the generalized nonlinear Schrödinger (NLS)
equation

iut+uxx+i(g(|u|2)u)x+ f (|u|2)u=0, (5.1)

the two-dimensional version

iut+∆u+ f (|u|2)u=0, (5.2)

and the coupled nonlinear Schrödinger equation

{
iut+iαux+uxx+βu+κv+ f (|u|2,|v|2)u=0,
ivt−iαvx +vxx−βu+κv+g(|u|2 ,|v|2)v=0,

(5.3)

where f (u) and g(u) are arbitrary (smooth) nonlinear real functions and α, β, κ are real
constants. With suitable choices of the numerical fluxes, the resulting LDG schemes
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are proved to satisfy a cell entropy inequality and L2 stability and L2 error estimate of

O(hk+ 1
2 ) for the linearized version [97]. The LDG scheme is used in [97] to simulate the

soliton propagation and interaction, and the appearance of singularities. The easiness of
h-p adaptivity of the LDG scheme and rigorous stability for the fully nonlinear case make
it an ideal choice for the simulation of Schrödinger equations, for which the solutions of-
ten have localized structures such as a point singularity. In [73], Lu et al. also presented
LDG methods for the time dependent Schrödinger equation. A numerical flux is con-
structed to preserve the conservative property for the density of the particle described.

We show the double soliton collision of the NLS equation

iut+uxx+2|u|2u=0 (5.4)

in Fig. 16.
Singular solutions for the two-dimensional NLS equation

iut+uxx+uyy+|u|2u=0, (5.5)

with the initial condition
u(x,y)=(1+sinx)(2+siny), (5.6)

and a periodic boundary condition are shown in Fig. 17. Strong evidence of a singularity
in finite time is obtained, although there is no rigorous proof of breakdown in this case.

5.2 The Camassa-Holm (CH) equation

An LDG method for solving the Camassa-Holm (CH) equation

ut−uxxt+2κux+3uux =2uxuxx+uuxxx, (5.7)

where κ is a constant, is designed in [101]. Because of the uxxt term, the design of an LDG
method is non-standard. The non-local term uxxt increases the difficulty in designing an
efficient and stable LDG method significantly. By a careful choice of the numerical fluxes,
we obtain an LDG scheme which can be proved to satisfy a cell entropy inequality and to
be L2 stable [101]. We have also obtained a sub-optimal O(hk) error estimate in L2 norm
in [101]. In Figs. 18 and 19, we show the peak profile propagation and the break up of
plateau traveling wave of the CH equation.

5.3 The Hunter-Saxton (HS) equation

In [102], LDG methods are designed for the Hunter-Saxton (HS) equation

uxxt+2uxuxx+uuxxx =0, (5.8)

its regularization with viscosity

uxxt+2uxuxx+uuxxx−ε1uxxxx =0, (5.9)
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Figure 18: Reproduced from [101]. The peak profile of the CH equation (5.7). Periodic boundary condition in

[0,30]. P5 elements and a uniform mesh with N =320 cells.

and its regularization with dispersion

uxxt+2uxuxx+uuxxx−ε2uxxxxx =0, (5.10)

where ε1 ≥ 0 and ε2 are small constants. This equation arises in two different physi-
cal contexts in two nonequivalent variational forms. It is the high frequency limit of
the Camassa-Holm equation, which is an integrable model equation for shallow water
waves. The nonlinear terms in the HS equation are similar to those in the Camassa-Holm
equation. Even though the method developed in [101] gives us a hint on how to treat
these nonlinear derivative terms, the different solution property of the HS equation gives
birth to new difficulties. When ux becomes discontinuous, a special numerical treatment
for the derivative is needed. LDG methods for the HS type equations are designed and a
rigorous proof for the energy stability are given in [102].

5.4 Multi-scale problems

In [106], DG methods based on non-polynomial approximation spaces are developed
for numerical solution of time dependent hyperbolic, parabolic, steady-state hyperbolic
and elliptic PDEs. The algorithm is based on approximation spaces consisting of non-
polynomial elementary functions such as exponential functions, trigonometric functions,
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Figure 19: Reproduced from [101]. The break up of plateau traveling wave of the CH equation (5.7). Periodic

boundary condition in [−40,40]. P2 elements and a uniform mesh with N =800 cells.

etc., with the objective of obtaining better approximations for specific types of PDEs and
initial and boundary conditions. L2 stability and error estimates can be obtained when
the approximation space is suitably selected. Numerical examples with a careful selec-
tion of the approximation space to fit individual PDE and initial and boundary conditions
show more accurate results than the DG methods based on the polynomial approxima-
tion spaces of the same order of accuracy.

This technique is used to solve the elliptic multi-scale problem based on the DG
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method in [107]. They consider the following elliptic multi-scale problem

−∇·(aε(x)∇u)= f (x), (5.11)

where the coefficient aε(x) is an oscillatory function involving a small scale ε, for example
it could be aε(x)= a(x,x/ε) and the force function f (x) does not involve this small scale.
The main ingredient of this method is to use a non-polynomial multi-scale approximation
space in the DG method to capture the multi-scale solutions using coarse meshes without
resolving the fine-scale structure of the solution. Analysis on the approximation, stability
and error estimates, and numerical results are presented in [107].

In [91], Wang and Shu discuss the one-dimensional stationary Schrödinger Poisson
problem {

− h̄2

2m ϕ′′
p−qVϕp =Ea

p ϕp, (p≥0),

h̄ϕ′
p(a)+ipϕp(a)=2ip; h̄ϕ′

p(b)= ipb ϕp(b),
(5.12)

where m is the effective mass (assumed to be constant in the device), q is the elementary
positive charge of the electron, V is the total electrostatic potential in the device and

pb =
√

p2+2qm(Vb−Va), Ea
p =

p2

2m
−qVa.

An explicit formula for the phase factor of wave functions from WKB asymptotic analy-
sis can be obtained. Based on the development for LDG methods for the non-polynomial
basis functions in [106], the work in [91] combines the WKB approach with the LDG
method by using exponential wave approximation spaces. It provides an important re-
duction of both the computational cost and memory in solving the Schrödinger equation.
This fast solver is applied to the simulation of the resonant tunneling diode where the
Schrödinger equation needs to be simulated repeatedly. In Table 4, the results for the
linear Schrödinger equation under two energies are shown. WKB-LDG method present
a round-off error in the linear case. LDG P1 has a second order convergence and LDG P2

has a third order convergence in L2 norm.

Table 4: Reproduced from [91]. Results in the linear case with exact solution.

N L2 error N L2 error
E=0.0895eV E=0.046072eV

WKB-LDG 13 4.63E-14 13 1.57E-16
39 1.86E-12 39 2.34E-13

LDG P1 135 2.66E-4 135 2.00E-5
1350 1.76E-6 1350 1.84E-7

LDG P2 135 6.00E-6 135 4.90E-7
1350 6.13E-9 1350 4.94E-10
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6 Time discretization

The application of the DG or LDG method discretizes the spatial variables and generates
a large coupled system of ordinary differential equations (ODEs). One would then need
to use a suitable ODE solver to discretize the time variable. For hyperbolic conservation
laws and convection dominated convection diffusion equations, explicit and nonlinearly
stable Runge-Kutta time discretizations [55, 85] are suitable choices. The resulting fully
discretized scheme, termed Runge-Kutta DG (RKDG) method [37], are stable, efficient
and accurate for solving such convection or convection dominated problems. However,
for PDEs with higher order spatial derivatives, especially when the coefficients in front
of these higher order spatial derivative terms are not small, such explicit and local time
discretization suffers from extremely small time step restriction for stability, of the form
∆t≤C∆xp where p is the order of the PDE, due to the stiffness of the spatial LDG operator
which approximates both the lower and higher order spatial derivatives. Often, such a
small time step is not needed for the purpose of accuracy and is purely an artifact of
the explicit time discretization technique. It would therefore be desirable to use either
nonlocal or implicit time discretization techniques to alleviate this problem.

In [92], three different time discretization techniques for solving the stiff ODEs result-
ing from a LDG spatial discretization to PDEs with higher order spatial derivatives were
explored. These are the semi-implicit spectral deferred correction (SDC) method, the ad-
ditive Runge-Kutta (ARK) method and the exponential time differencing (ETD) method.
Numerical experiments are performed to verify that all three methods are efficient in dis-
cretizing the LDG schemes in time, allowing time steps ∆t=O(∆x) rather than the much
more restrictive ∆t =O(∆xk) of explicit time discretizations for k-th order PDEs. In par-
ticular, the SDC method has the advantage of easy implementation for arbitrary order of
accuracy. In the following, we give a brief introduction to these three methods.

6.1 The spectral deferred correction method

Dutt, Greengard and Rokhlin presented a new variation of the classical method of de-
ferred correction, called the spectral deferred correction (SDC) method, in [49]. It is based
on low order time integration methods, which are corrected iteratively, with the order of
accuracy increased by one for each additional iteration. Attractively, we can split stiff and
non-stiff terms as needed and treat them differently (implicitly for the stiff terms and ex-
plicitly for the non-stiff terms). Minion presented the semi-implicit SDC (SISDC) method
in [74].

Consider the ODE system
{

ut = F(t,u(t)), t∈ [0,T],

u(0)=u0,
(6.1)

where u0,u(t)∈Cn and F :R×Cn−→Cn. F∈C1(R×Cn), which is sufficient to guarantee
local existence and uniqueness of the solution to (6.1).
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Suppose now the time interval [0,T] is divided into N intervals by the partition 0=t0<

t1 < ···< tn < ···< tN =T. Let ∆tn ≡ tn+1−tn and un denotes the numerical approximation
of u(tn), with u0 =u(0).

Rewrite (6.1) into an integral form in the subinterval [tn,tn+1]:

u(tn+1)=u(tn)+
∫ tn+1

tn

F(τ,u(τ))dτ. (6.2)

Then divide the time interval [tn,tn+1] into P subintervals by choosing the points tn,m for
m=0,1,··· ,P such that tn=tn,0<tn,1<···<tn,m<···<tn,P=tn+1. Let ∆tn,m=tn,m+1−tn,m and
uk

n,m denotes the kth order approximation to u(tn,m). To avoid the instability of approxi-
mation at equispaced nodes for high order accuracy, the points {tn,m}P

m=0 are chosen to
be the Chebyshev Gauss-Lobatto nodes on [tn,tn+1]. We can also use the Legendre Gauss-
Lobatto nodes, or Chebyshev or Legendre Gauss-Radau or Gauss nodes. Starting from
un, we give the algorithm to calculate un+1 in the following.

Compute the initial approximation
u1

n,0 =un.

For non-stiff/stiff problems, use the forward/backward Euler method to compute a first order
accurate approximate solution u1 at the nodes {tn,m}P

m=1.

For m=0,··· ,P−1

1. For non-stiff problems,

u1
n,m+1 =u1

n,m+∆tn,mF(tn,m,u1
n,m). (6.3)

2. For stiff problems,

u1
n,m+1 =u1

n,m+∆tn,mF(tn,m+1,u1
n,m+1). (6.4)

Compute successive corrections
For k=1,··· ,K
uk+1

n,0 =un.

For m=0,··· ,P−1

1. For non-stiff problems, with 0≤θ≤1,

uk+1
n,m+1 =uk+1

n,m +θ∆tn,m(F(tn,m,uk+1
n,m )−F(tn,m,uk

n,m))+ Im+1
m (F(t,uk)), (6.5)

2. For stiff problems, with 1
2 ≤θ≤1,

uk+1
n,m+1 =uk+1

n,m +θ∆tn,m

(
F(tn,m+1,uk+1

n,m+1)−F(tn,m+1,uk
n,m+1)

)

+ Im+1
m (F(t,uk)), (6.6)
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where Im+1
m (F(t,uk)) is the integral of the P-th degree interpolating polynomial on the P+

1 points (tn,m,F(tn,m,uk
n,m))P

m=0 over the subinterval [tn,m,tn,m+1], which is the numerical
quadrature approximation of

∫ tn,m+1

tn,m

F(τ,u(τ))dτ. (6.7)

Finally we have un+1 =uK+1
n,P .

6.2 Additive Runge-Kutta methods

When the right hand side F(t,u) of the ODE (6.1) can be written as the sum of a non-stiff
term FN(t,u) and a stiff term FS(t,u), we have

{
ut = FN(t,u(t))+FS(t,u(t)), t∈ [0,T],

u(0)=u0.
(6.8)

Following the work [5, 65], the ARK methods are used to solve equation (6.8). They are
given in the following form

u(i) =un+∆t
i−1

∑
j=0

a
[N]
ij FN(tn +cj∆t,u(j))+∆t

i

∑
j=0

a
[S]
ij FS(tn+cj∆t,u(j)), (6.9)

i=1,··· ,s,

un+1 =un+∆t
s

∑
j=0

b
[N]
j FN(tn+cj∆t,u(j))+∆t

s

∑
j=0

b
[S]
j FS(tn +cj∆t,u(j)), (6.10)

where u(0) = un and u(i) approximates u(tn+ci∆t). The non-stiff and stiff terms are in-
tegrated by their own (s+1)-stage Runge-Kutta methods respectively. The Butcher co-

efficients a
[N]
ij , a

(S)
ij , b

(N)
j , b

(S)
j and cj are constrained by order of accuracy and stability

considerations. In [65], the implicit-explicit additive Runge-Kutta (ARK) methods from
third- to fifth-order are presented in which the stiff terms are integrated by an L-stable,
stiffly-accurate, singly diagonally implicit Runge-Kutta method while the non-stiff terms
are integrated with a traditional explicit Runge-Kutta method. For a detailed description
of the methods as well as their implementation and applications, we refer the readers
to [65].

6.3 Exponential time differencing (ETD) methods

The ETD method was constructed to solve the equation of the following form

ut =Lu+F(t,u), (6.11)
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where L is a linear term and F is nonlinear. Many interesting equations are of this form,
where typically L represents the stiff part of the equation. When discretizing in space we
obtain a system of ODEs of the form

ut = Lu+F(t,u). (6.12)

The exponential time differencing (ETD) methods can be described in the context of
solving (6.12). Integrating the equation over a single time step from t=tn to tn+1=tn+∆t,
we get

u(tn+1)= eL∆tu(tn)+eL∆t
∫ ∆t

0
e−LτF(tn+τ,u(tn+τ))dτ. (6.13)

The equation (6.13) is exact. We denote the numerical approximation to u(tn) by un and
write F(tn,un) as Fn. The simplest approximation to the integral (6.13) is to take F as
a constant, F = Fn+O(∆t), on the interval tn ≤ t ≤ tn+1. Then we obtain the first order
scheme ETD1, given by

un+1 = eL∆tun+L−1(eL∆t− I)Fn. (6.14)

If instead of assuming that F is constant over the interval tn ≤ t≤ tn+1, we use the linear
approximation that

F= Fn+t(Fn−Fn−1)/∆t+O(∆t2). (6.15)

Then we obtain the second order scheme ETD2, given by

un+1 =eL∆tun+
1

∆t
L−2((I+∆tL)eL∆t− I−2∆tL)Fn

+
1

∆t
L−2(−eL∆t+ I+∆tL)Fn−1. (6.16)

A second order ETD method of Runge-Kutta type, analogous to the ETD2 method, is as
follows. First, the ETD1 (6.14) is taken to give

an = eL∆tun+L−1(eL∆t− I)Fn. (6.17)

Then the approximation

F= F(tn,un)+(t−tn)(F(tn +∆t,an)−F(tn,un))/∆t+O(∆t2), (6.18)

is applied on the interval tn ≤ t≤ tn+1, and is substituted into (6.13) to yield the scheme
ETD2RK given by

un+1 = an +
1

∆t
L−2(eL∆t− I−∆tL)(F(tn+∆t,an)−Fn). (6.19)



Y. Xu and C.-W. Shu / Commun. Comput. Phys., 7 (2010), pp. 1-46 39

Cox and Matthews derive a set of ETD methods based on Runge-Kutta time-stepping,
which they call ETDRK schemes in [43], among general formulas for ETD-schemes to ar-
bitrary order. In a recent paper Kassam and Trefethen [64] compare various fourth order
methods for solving equations of the form (6.12), and conclude that the best by a clear
margin is a modification to the ETDRK schemes. In essence, for nonlinear time depen-
dent equations, the ETD schemes provide a systematic coupling of the explicit treatment
of nonlinearities and the implicit and possibly exact integration of the stiff linear parts of
the equations, while achieving high accuracy and maintaining stability.

To overcome the vulnerability of the error cancelations in the high order ETD and
ETDRK schemes, and to generalize the ETD schemes to non-diagonal problems, in [64],
modified ETD schemes are proposed by using the complex contour integrals

f (L)=
1

2πi

∫

Γ
f (z)(zI−L)−1dz, (6.20)

on a suitable contour Γ to evaluate the coefficients (e.g. f (L)=L−2(eL∆t−I−∆tL) in (6.19))
in the update formula for ETDRK.

7 Concluding remarks and ongoing work

We have given a review on the algorithm design, analysis, implementation and applica-
tion of LDG schemes for solving high order time-dependent PDEs. The extensive list of
applications mentioned in this paper, or contained in the references and their references
therein, would hopefully convince the readers the wide applicability of LDG schemes.
We mention in this last section a few topics which are currently being investigated about
LDG and in general about DG schemes:

Adaptivity

Adaptive methods are becoming exceedingly important in applications. The DG meth-
ods are ideally suited for adaptivity and parallelizability and might be the methods of
choice for the use of adaptive strategies combined with load balancing techniques, not
only in computational fluid dynamics but in a wide variety of problems of practical in-
terest in mathematical physics. The LDG methods are flexible for general geometry, un-
structured meshes and h-p adaptivity, and have high parallel efficiency. In order to be
able to perform adaptivity while maintaining the high parallelizability of the DG meth-
ods, new high-order accurate time-stepping methods would have to be created which
could use different time steps at different locations. We seek methods where h- and/or p-
refinement may be performed on any element at any time. The benefit of the DG method
is that the adaptive procedure only using local operations to alter element sizes or poly-
nomial degrees. This is helpful to increase the accuracy and efficiency. The following
issues should be considered in designing the adaptive strategy
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• p-refinement;

• h-refinement;

• enrichment strategy.

It would be interesting to develop a scheme with the flexibility and high order accuracy
but tailored specifically to the solution of nonlinear wave problems exhibiting highly
localized dynamics. Such schemes have the potential to reduce the computation cost
significantly.

Error estimate analysis

It is advantageous to know how to locally refine the mesh in order to obtain a better ap-
proximation. Estimates of discretization errors are essential to appraise solution accuracy
and are, at the least, desirable to guide and control adaptive enrichment. A posteriori er-
ror estimation will be the first preparation for adaptive algorithms. How to design an
error estimator applicable to a variety of nonlinear wave problems is the most important
part in adaptive computation. As mentioned in [53], ideal a posteriori error estimates
should be

• inexpensive relative to the cost of the solution;

• accurate in the sense that they converge to the true error under h- and p-refinement;

• robust in the sense that they provide error bounds over a wide range of mesh spac-
ings, polynomial degrees, and norms.

Although there are some works [2,8,28,59,66,76,86,87] on error estimates for hyperbolic
conservation law and parabolic problems, there are only a few works in the literature
for error estimates of the LDG method for nonlinear wave equations with high order
derivatives. It is more challenging to perform error estimates for nonlinear PDEs with
high order derivatives than for first and second order PDEs.

Efficient and robust implicit time discretization

This would be helpful for situations with high order derivatives, or in an adaptive envi-
ronment where the grid size might be very small in some regions. In order to be able to
perform adaptivity while maintaining the high parallelizability of the DG methods, new
high-order accurate time-stepping methods would have to be created which could use
different time steps at different locations. The difficulty here is the high level of nonlin-
earity. For a fully implicit discretization, the resulting nonlinear system at each iteration
is costly to solve, and certain iterative procedures such as the Newton’s method does not
seem to be robust. Exploring efficient linear and nonlinear solvers for discretizing LDG
schemes for multi-dimensional problems with possible nonlinear higher order spatial
derivative terms will be important issues.
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Accuracy enhancement by post-processing

It is advantageous to know how to locally post-process the approximate solution in order
to obtain a better approximation; this is particularly true in the framework of a posteriori
error estimation and adaptive algorithms. For DG methods, this has been done, so far, in
two different ways: by finding super-convergence points and by a local convolution. A
post-processing accuracy enhancement technique developed by Cockburn, Luskin, Shu
and Süli [36] is also applied to the numerical solutions of the KdV type equations by Yan
and Shu [105]. The accuracy is enhanced from (k+1)-th order in L2 norm to (2k+1)-
th order in negative norm when Pk elements are used, indicating that a higher order of
accuracy in negative-order norms is retained by all these methods. The applications of
DG post-processing the approximate solution to other situations like wave propagation
phenomena in general are also among our planned research at the next stage.
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