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Abstract. Reservoir modeling is playing an increasingly important role in developing
and producing hydrocarbon reserves. In this paper, we provide a brief overview of
some main challenges in reservoir modeling, i.e., accurate and efficient modeling of
complex reservoir geometry and heterogeneous reservoir properties. We then present
modeling techniques we recently developed in addressing these challenges, includ-
ing a method for generating constrained Voronoi grids and a generic global scale-up
method. We focus on the Voronoi gridding method, which is based on a new con-
strained Delaunay triangulation algorithm and a rigorous method of adapting Voronoi
grids to piecewise linear constraints. The global scale-up method based on generic
flows is briefly described. Numerical examples are provided to demonstrate the tech-
niques and the advantage of combining them in constructing accurate and efficient
reservoir models.
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1 Introduction

The upstream oil industry involves finding hydrocarbon deposits, developing them, and
producing the hydrocarbons for commercial use. Over the past few decades, numerous
technological advances in the oil industry, e.g., remote detection and identification of
hydrocarbons, extended reach drilling, and polymer flooding, have increased the success
rate of finding reserves, made it possible to develop them and improved the recovery
from existing resources. In addition, advances in computing capabilities have enabled
geologists and engineers to model the reservoirs with increasing accuracy. In order to
meet the ever increasing global hydrocarbon demand, heavy capital investments and
continuous technological advances are required.

Various technologies used to understand a prospective reservoir provide information
at many different scales. Core plugs are a few inches in size. Well logs can detect prop-
erties within a few feet around the well. Seismic imaging covers a huge volume, but
its typical resolution is limited to a few meters vertically and tens of meters horizon-
tally. Limited by time and capital, direct sampling of reservoir rock and fluid properties
is sparse. Therefore, geologic interpretations based on seismic information and under-
standing of sedimentary processes are used to interpolate or extrapolate the measured
data in order to yield complete reservoir descriptions. Information provided by these
technologies is incorporated into reservoir models. Constructing reservoir models has
become a crucial step in resource development as reservoir modeling provides a venue
to integrate and reconcile all available data and geologic concepts.

Faults s — _

Figure 1: Subsurface structural geometry: faults and stratigraphic layers. Left: seismic image of subsurface.
Right: reservoir model with multiple faults.

One of the key challenges in reservoir modeling is accurate representation of reservoir
geometry, including the structural framework (i.e., horizons/major depositional surfaces
that are nearly horizontal, and fault surfaces which can have arbitrary spatial size and
orientation), and detailed stratigraphic layers (Fig. 1). The structural frameworks de-
lineate major compartments of a reservoir and often provide the first order controls on
in-place fluid volumes and fluid movement during production. Thus, it is important to
model the structural frameworks accurately. However, despite decades of advances in
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grid generation across many disciplines, grid generation for practical reservoir modeling
and simulation remains a daunting task.

Specific challenges in grid generation for reservoir simulation arise from the complex
structure of subsurface reservoir geometry (Fig. 1). Typical aspect ratio of reservoir di-
mensions, horizontal to vertical, can be several orders of magnitude. As a consequence,
the aspect ratio of grid cell is usually 10 to 100. In this setting, 2.5D (prismatic) Voronoi
grids, constructed by projection or extrusion of a 2D Voronoi grid in vertical or nearly
vertical direction, are a natural choice for reservoir simulations. Prismatic grid cells can
easily be constrained to resolve horizons or stratigraphic layer boundaries. Voronoi grids
are much more flexible and adaptive than corner point grids commonly used in commer-
cial reservoir simulators, generally providing much fewer grid cells for the same accuracy
of geometry representation and simulation. They also help reduce the grid orientation
effect on numerical solutions of fluid transport problems (Verma 1996). Although less
problematic than corner point grids, generating 2.5D Voronoi grids is often very challeng-
ing in practice due to the constraints these grids have to honor, which include numerous
(intersecting) faults, pinch-outs (areas where distinct horizons meet and continue as one
surface, cf. Lyons et al. 2006), correlated heterogeneities (e.g., permeability extremes),
and adaptive refinement as required for efficient and accurate flow simulations.

Small features
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Figure 2: Top view of a faulted structural framework. Features shown are projections of faults.

In many practical situations, the challenges of accurately constraining and adapting
the 2.5D Voronoi grid are associated with a 2D grid generation problem. To construct
2.5D grids, 2D grids are first generated on a planar projection of the reservoir domain, in-
cluding all the constraining features such as faults and boundaries of the reservoir model
(Fig. 2). The projected features provide constraints to the 2D grids. The 2D grids are then
projected vertically (or along deviated lines) to account for (non-vertical) faults and yield
a prismatic grid suitable for reservoir simulations (Gunasekera et al. 1997).

In this paper, we present novel approaches for generating adaptive, constrained 2D
Delaunay and Voronoi grids. Since a constrained 2D grid resolves constraining features
with cell edges, a constrained Delaunay triangulation (having vertices on the features)
is not a dual of a constrained Voronoi grid (having cell centers away from the features).
Constrained Delaunay triangulation algorithms is an active research area (see, e.g., Chew
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1989, Ruppert 1995, Shewchuk 2002, Miller et al. 2003), whereas the constrained Voronoi
grids have not been extensively studied in the literature. Fig. 2 shows some of the chal-
lenges in generating a constrained Voronoi grid, i.e., exactly honoring the small features,
intersections of multiple features, and intersections of features at sharp angles.

Several techniques have been proposed to solve the problem of constrained Voronoi
grid generation for accurate reservoir simulation. In a technique by Heinemann et al.
(2003), the grid exactly honors polylines (i.e., faults) but fails to be Voronoi in the vicinity
of the fault. This simplification makes the flow calculations less accurate. Approaches by
Verma (1996) and Gunasekera (1997) always yield Voronoi grid cells but do not guarantee
exact representation of the constraints. They fail to accurately constrain the Voronoi grid
in the presence of challenging features indicated in Fig. 2.

Our new method for generating adaptive constrained Voronoi grids allows resolving
the internal features exactly with the Voronoi cell faces while adapting the grid cell sizes
to a specified density function. It overcomes the difficulties mentioned above (Fig. 2). The
algorithm is based on constrained Delaunay triangulations and a novel protection area
concept. We also developed a new algorithm for generating constrained Delaunay trian-
gulations based on a grid smoothing algorithm and local feature capturing operations.
This algorithm enables automatic adaptation of cell sizes to a target density distribution
(including the cells near the constraints) while preserving Delaunay triangulation con-
forming to constraints.

Another major challenge in reservoir modeling is to accurately and efficiently repre-
sent reservoir heterogeneity at multiple scales. Typically fine-scale geo-cellular models
consist of 10°-108 cells. Geostatistical methods are often used to populate the models
with piecewise constant properties that honor known and/or inferred statistics. A typ-
ical fine-scale model captures geologic variations on the order of a foot in the vertical
direction and a few hundred feet in the areal directions. But, heterogeneities at smaller
scales can have a significant impact on the reservoir performance (Coll et al. 2001; Honar-
pour et al. 1994). Therefore, accurate scale-up of the reservoir properties to the fine-scale
model is required to capture the effect of sub-fine-scale heterogeneities (cf. Pickup et al.
2005).

In practice, the fine-scale models often need to be further coarsened for multi-phase
flow simulations. This is especially true when many simulation runs are needed to quan-
tify uncertainty, match production history, or to optimize reservoir management. Practi-
cal simulations are often conducted with about 10° cells. Thus, coarse simulation models
are constructed from the fine-scale geo-cellular models through another scale-up process.
Here, both coarsening of reservoir model grids, or up-gridding, and scale-up of reservoir
properties are involved. In fact, the two processes can be coupled to optimize the sim-
ulation grids, so that effects of strong correlated heterogeneity on the multi-phase fluid
transport can be accurately captured on significantly coarser models. A number of stud-
ies have demonstrated the effectiveness of this approach (Durlofsky et al. 1997, Stern and
Dawson 1999, Li and Beckner 2000, and Prevost et al. 2005). See Durlofsky (2005) for a
review of recent developments in this area.
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Grid optimization requires both advanced grid generation algorithms described above
and accurate and efficient scale-up of reservoir properties, especially permeability. To this
end, we have developed a global scale-up method based on generic flow solutions (i.e.,
flows calculated from generic boundary conditions). This type of method was first pro-
posed in the 1980s (White and Horne 1987). Its rigorous mathematical analysis was done
only recently (Owhadi and Zhang 2007). Significant challenges existed in applying it to
real reservoir models, which often contain difficult geometry such as faults and pinch-
outs, and complex connectivity due to irregular distributions of flow barriers. We have
developed a suite of techniques to make the method practical (Lyons et al. 2006, Wu
et al. 2007a, 2008, Stone et al. 2007). Our approach is different from existing global or
local-global scale-up methods that use specific well-driven flows (see, e.g., Pickup et al.
1992, Nielson and Tveito 1998, Holden and Nielson 2000, Zhang et al. 2005, Chen and
Durlofsky 2005, Wen et al. 2005). The motivation behind using generic flows is to gen-
erate coarse models suitable for practical simulations with active well management (i.e.,
boundary condition changes at the wells). When necessary, specific well-driven flows
can still be used to improve the accuracy of the simulation models (Chen and Wu, 2007,
Owahdi 2007).

We remark that alternative methods have been studied to capture the effects of het-
erogeneity on fluid transport. For example, the use of pseudo-functions has been studied
over the past several decades (cf. Barker and Thibeau 1997). It still has difficulty dealing
with process dependency of scale-up results and is not widely applied (but see Efendiev
and Durlofsky (2003) and references therein for recent progresses). Multiscale methods
developed over the past decade attempt to solve flow and transport problems on coarse
and fine grids, respectively, and use multiscale basis functions to map solutions between
grids (see, e.g., Hou and Wu 1997, Chen and Hou 2003, Jenny et al. 2003, Aarnes 2004,
Efendiev et al. 2006). While promising, these methods also face challenges in terms of
up-gridding (Aarnes et al. 2006) and incorporating global flow information (Efendiev et
al. 2006, Owhadi and Zhang 2007). Again, strong correlated heterogeneities are a source
of the challenges.

In this paper, we present our new gridding algorithm and the global scale-up method,
with emphasis on the former. In Section 2 we present new approaches for generating
2D adaptive, constrained Voronoi grids and Delaunay triangulations. In Section 3 we
briefly review our global scale-up method. Numerical examples are given in Section 4
to demonstrate the benefits of using these new modeling techniques, emphasizing on the
interplay between grid generation and scale-up. Concluding remarks are given in Section
5.

2 Adaptive constrained grid generation

In this section, we present our novel approach for generation of adaptive, constrained
Voronoi grids that resolve all the constraining features (projections of faults and bound-
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Figure 3: Use of protection areas (a) around domain boundary (b) and internal features (c) for constrained
Voronoi grid generation. Voronoi grid honoring the features is known in (a) and boundaries of protection area
(d) are the constraints for Delaunay triangulation.

aries) with cell edges and have cell sizes consistent with a target density specification
(e.g., a posteriori error estimates, varying coefficients of the governing equations, such as
permeability, etc.). In the following, we assume that prior to constrained grid generation,
all constraining features in the model are approximated by a set of polylines or polygons
yielding an input Planar Straight Line Graph (PSLG) P1.

Known approaches to constrained Voronoi grid generation (Verma 1996, Gunasekera
1997) distribute pairs of mirror-image points along the constraints to serve as centers of
Voronoi cells thus forcing the face between each such pair of cells to lie on the constraint.
This technique works for non-intersecting nearly straight constraints, but it is not suf-
ficient for accurate gridding of polylinear, curved, and multiple intersecting constraints
(recall challenges in Fig. 2).

The problem of a Voronoi grid generation is often regarded as a problem of construct-
ing a Delaunay triangulation and vise versa due to the duality between the two grids.
Introduction of the constraints, however, implies more complex dual relationships. By
definition in (Chew 1989), the constrained Delaunay triangulation of a PSLG P1 includes
only the edges and vertices of P1 as triangle edges and vertices, and it is as close to De-
launay triangulation as possible, meaning that it is Delaunay with regards to edges and
vertices 'visible” or non-obstructed by the segments of P1. Constrained Delaunay triangu-
lation is no longer a dual of the Voronoi diagram of P1. Delaunay refinement techniques
(Ruppert 1995, Shewchuk 2002, Miller et al. 2003) with input PSLG P1 result in triangu-
lations where all edges are Delaunay; however, the segments of P1 might be refined with
the Steiner points added to achieve target triangle quality bounds and size/density spec-
ifications. The Voronoi grid dual to the refined Delaunay triangulation has its cell centers
positioned on the P1 segments and, thus, is not a constrained Voronoi grid according to
our definition.

We propose to reformulate a constrained Voronoi grid generation problem into a tri-
angulation problem with the help of protection area concept (Fig. 3). Protection areas are
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constructed around the constraining PSLG P1, such that their boundaries form another
PSLG P2. The vertices of P2 serve as the centers of Voronoi cells and are constructed to
give an exact representation of the internal features with the Voronoi grid edges. Con-
strained Delaunay triangulation or refinement can now be used to triangulate the com-
plement of the protected areas with respect to the rest of the domain (with P2 as input).
The challenge is to construct the protection areas in such a way that the union of Delau-
nay triangulations inside and outside of protection areas is also Delaunay and thus yields
a consistent dual constrained Voronoi grid.

2.1 Constrained Voronoi grid generation: Protection areas

We introduce the technique for construction of protection areas using circles that ad-
dresses this challenge. Consider a polyline as P1 in Fig. 4a and assume that all segments
in the polyline will be edges in the final Voronoi grid. Thus, the vertices on the polyline
are vertices in the final Voronoi grid. We form intersecting circular disks around these
vertices. The two intersection points of two neighboring circles will be vertices of the
protection polygon and centers of Voronoi cells. Note that line segment AB is a perpen-
dicular bisector of line segment CD. Additional points can be placed on the boundary
of the union of the disks; no point is allowed inside that boundary. With these points, a
protection polygon P2 is formed around the polyline.

Figure 4: (a) A method to generate protection area bounded by P2 around a polyline P1 from circles. (b)
Voronoi cell edges inside the protection area.

Inside the protection polygon P2, the Delaunay triangulation is not unique because
triangles formed by points on the same circle share the same circumcenter (an example is
point A). Since the protection area contains no point other than the ones on its boundary
(vertices on the polyline P1 are not used in the triangulation), any Delaunay triangulation
inside the protection area leads to the same unique Voronoi diagram whose edges include
the line segments on the polyline (Fig. 4b).

In order to deal with the case of multiple polylines intersecting at one point, we use
a similar idea as shown in Fig. 5. In this figure, four polylines (marked as Lines 1 to 4)
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intersect at one point. We place points around the intersection on a circle centered at the
intersection point (i.e., the inner circle in the figure). Thus, any Delaunay triangulation
of the thick inner polygon produces triangles that share the same circumcenter, i.e., the
intersection point.

To honor the intersecting polylines, the pair of points on the two sides of a polyline
need to form mirror image with respect to the polyline, e.g., pairs A-B, A-C, D-E, and
F-G in Fig. 5. For sharp angles such as the one formed between Line 1 and Line 2, it is
preferable to place only one point on the dashed line bisecting the angle. This results in a
triangular Voronoi cell to fit into the sharp angle. Again, no points are placed inside the
inner circle.

Figure 5: Generation of constrained Voronoi grid near an intersection point of multiple polylines: (a) triangu-
lation and protection areas, (b) Voronoi cells.

Another circle can be used to further control the layout of Voronoi cells near the inter-
section, especially when sharp angles are present. Points are placed on this outer circle
in the same way as those on the inner circle. However, points are allowed inside the
outer circle. These points are used to control the sizes and shapes of Voronoi cells. Fur-
ther away from the intersections, the method illustrated in Fig. 4 could be used to place
points around the polylines.

When generating Delaunay triangulation in the complement of protection areas, no
Steiner point is allowed inside the union of protection circles. Consequently, the union of
triangulations inside and outside of protection areas will remain Delaunay and provide
a dual constrained Voronoi grid.

In practice, the major difficulty in the suggested approach lies in defining the radii
and spacing of protecting circles. The radii and spacing (refinement of P1) have to ac-
count for both local and global constraint geometry (e.g., curvature and distance to other
constraints), as well as agree with a target mesh density specification. For example, it is
preferable that the line segment formed by the intersections of two neighboring circles
(e.g., CDin Fig. 4) to intersect the segment with end points being the centers of the circles
(e.g., AB). This is not always possible if a long segment on the polyline neighbors two
much shorter segments. In this case, the long segment needs to be refined. In another



L. V. Branets, S. S. Ghai, S. L. Lyons and X.-H. Wu / Commun. Comput. Phys., 6 (2009), pp. 1-23 9

example, if two constraints come close to each other but never intersect, the radii and
spacing of the circles on both constraints need to be adjusted so that circles from different
protection areas do not intersect or intersect exactly along the segments of P2 and the
space left between the protection areas allows for generation of not-too-fine Delaunay
triangles.

Similar problems of tying local and global constraint geometry with sizing and qual-
ity of mesh elements are being dealt with in Delaunay refinement algorithms. Thus, we
employ Delaunay refinement in constructing protection areas. We first construct a De-
launay triangulation T conforming to the constraints P1 using a Delaunay refinement
approach in Shewchuk (2002). This way, the triangles capture all the global and local
information about the constraints. Then, the protection areas are constructed around the
constraints by transforming the triangulation vertices on the constraints. Each point ly-
ing on the straight segment of P1 is replaced by the pair of protection points forming
a mirror image of each other with respect to this segment (e.g., points C and D formed
from boundary point E in Fig. 4). Each point lying at a corner or an intersection of several
segments of P1 is replaced by a set of points placed on the circle around the intersection
such as points A, ---, G in Fig. 5. The radius of the intersection circle or the distance be-
tween the old point and any protection point formed from it is determined as a fraction
of minimum edge length (e.g., 0.25) of all triangle edges connected to the point on the
constraint. Then, the protection circles are constructed from the protection points (and
not the other way around).

Instead of generating a new Delaunay refinement in the complement of protection
areas, we can reuse initial Delaunay triangulation T which only requires adjustment near
the protection areas. The adjustment can be efficiently carried out by adding triangles
where new points were introduced and an iterative swap of non-Delaunay edges. Thus,
we have

Algorithm 2.1: Constrained Voronoi grid generation conforming to input PSLG P1

1. Generate Delaunay triangulation TO conforming to PSLG P1.

2. Construct protection points from the vertices of TO lying on the constraints. Use circles with
radii determined form the edges of TO adjacent to those constrained vertices.

3. Generate Delaunay triangulation T1 of the set of points consisting of the remaining (uncon-
strained) vertices of TO and the protection points.

4. From T1 construct dual Voronoi mesh, which is conforming to PSLG P1.

An important advantage of the above method is that it conveniently lends itself to
dynamic grid adaptation: initial constrained triangulation can be adapted or optimized,
and the Voronoi grid updated through reconstruction of protection areas and localized
re-triangulation.
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2.2 Smoothing of constraints conforming Delaunay triangulation

For both Voronoi grids and Delaunay triangulations, Centroidal Voronoi Tessellation
(CVT) algorithm (Du and Gunzburger 2002) can be used to optimize grid density accord-
ing to a target function and even to include anisotropy. According to the CVT method,
iterative smoothing procedure for Voronoi grids can be formulated as Lloyd’s method
where at each iteration, k+1, centers Z of Voronoi cells V;(Z) are repositioned to the mass
centroids according to a density function p

Jv.(z0 Y(¥)dy
vz

ZM =T,(Z") =
! z") fvl.(zk)P(Y)dY

2.1)

and then re-triangulated. Lloyd” method converges to a CVT.

However, the CVT algorithm does not account for internal constraints. We propose
a novel feature capturing procedure which, coupled with the Lloyd’s iteration (2.1), pro-
vides an approach for smoothing Delaunay triangulation such that it remains Delaunay
and conforms to features after each iteration. We then use this method for adaptive con-
strained Voronoi grid generation since it allows for cell size near boundary (or radius of
the protecting circles) to be automatically determined from the density function.

Within each iteration of smoothing we combine the feature capturing procedure with
node repositioning according to the Lloyd’s iteration (2.1). Initial triangulation for smooth-
ing can be any triangulation which includes vertices of the input PSLG P1, since it can
be corrected by edge swap to honor the constraints and to have Delaunay unconstrained
edges.

e el

Figure 6: Feature capturing operations: (a) snapping interior point to the feature, (b) removing point from the
feature into the interior.

Our feature capturing procedure is based on the two local operations illustrated in
Fig. 6. In the first operation, an interior point (A) is snapped to a feature segment when it
is a vertex of a triangle opposite a feature edge (e) and the angle at the vertex is obtuse. As
a result of snapping, point A is projected onto the feature edge and edge (e) is swapped
(Fig. 6a). In the second operation, a point (N) from a feature segment is moved into the
interior when it is opposing feature edges (a, b, and c) on the same feature segment (BC)
in at least 3 triangles and the summary of the angles at the point is acute. During the
second operation, one of the edges connecting point N and a point (D) on the feature
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segment is shrunk in half by moving point D into the interior. The movement is followed
by swap of the edges connecting to point D which intersect the feature segment after the
move of D (Fig. 6b).

Algorithm 2.2: Constraint preserving CVT smoothing of an input Delaunay triangulation

1. Loop through all the vertices in triangulation and snap the candidate points (e.g., A in Fig. 6a)
to the features until there is no more candidate satisfying the snap condition formulated above
is left; as a result, only acute angles are facing the feature edges.

2. Similarly, loop through all the vertices removing candidate points (e.g., N in Fig. 6b) from the
features.

3. Correct triangulation by recursive edge-swap of interior non-Delaunay edges.

4. Reposition all points to the density-weighted centroids of their Voronoi regions (2.1) (points on
the features are moved along the features only, as in Du and Gunzburger 2002).

5. Correct triangulation by recursive edge-swap of interior non-Delaunay edges.

2.3 Summary

To summarize, we have reformulated the constrained Voronoi grid generation problem
in terms of requirements for triangulation. The key idea is the construction of protection
areas around the constraints using circles. We showed that the protection circles can be
constructed using Delaunay refinement techniques to capture both local and global con-
straint geometry information. Our approach is capable of addressing all the challenges of
constrained Voronoi gridding shown in Fig. 2. We have also presented an algorithm for
smoothing Delaunay triangulations so that they conform to constraining features. Thus,
we can generate adaptive cell sizes everywhere in the domain, including on the con-
straints. The smoothing method can be used in combination with constrained Voronoi
gridding algorithm for dynamic adaptation of constrained Voronoi grids.

3 Generic global scale-up

In this section, we briefly describe our global scale-up method to provide sufficient back-
ground for the reader to understand the numerical examples in Section 4. We refer the
reader to Lyons et al. (2006), Stone et al. (2007), and Wu et al. (2007a, b, 2008) for more de-
tailed descriptions as well as discussions on the challenges and our resolutions in apply-
ing the method to real models. These references also contain many numerical examples
of the global scale-up method.

Let a detailed reservoir model be prescribed in a 3D domain (). We solve incom-
pressible, single-phase Darcy flow equation with linear boundary conditions (White and
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Horne 1987, Owhadi and Zhang 2005), i.e.,
V-(KVP)=0 in () P=x onadQ), (3.1)

where K is fine-scale permeability and P is vector of three pressure solutions. Let V C ()
be a volume on which the effective permeability is to be calculated. We calculate constant
tensor permeability via

K = (KVP), (VP), ", (3.2)

where the angular brackets indicate volume averages over V. We call V a scale-up vol-
ume. Scale-up volumes can be grid blocks of a coarse grid or a set of random volumes.
Results on the random volumes of same sizes can be used to estimate permeability statis-
tics at that scale for building geo-cellular models. For finite-volume flow simulations,
the effective permeability can be used to calculate transmissibilities (Gunasekera et al.
1997). Or better yet, one can scale-up the transmissibility directly. Wu et al. (2007a, 2008)
presented a transmissibility scale-up formulation using generic flows. In this paper, per-
meability calculated on unions of two neighboring grid blocks are used to calculate the
transmissibility, hence the additional harmonic average associated with traditional trans-
missibility calculation is avoided.

Note that the above volume average formulation (3.2) is the same as in local scale-up
(see, e.g., Wu et al. 2002). However, the upscaled permeability tensor is not symmetric in
general, especially when the scale of permeability heterogeneity is large compared to the
size of a scale-up volume. The lack of symmetry can be explained by the lack of symmetry
of the multiscale finite element method corresponding to the scale-up formulation (Wu
et al. 2008).

4 Numerical examples

In this section, we present several examples of the gridding and scale-up methods de-
scribed in the previous sections. Examples of constraint Delaunay and Voronoi grids are
given first. Then, we show the impact of global scale-up in coarsening fine-scale models.
Next, we apply adaptive gridding and global scale-up to a channelized reservoir model
and demonstrate the advantage of this powerful combination.

4.1 Adaptive constrained 2D grid generation

First, we demonstrate the performance of our adaptive, constrained 2D grid generation
methods and their ability to accurately honor the complex constraint geometry while
adapting grid cell size to a given density function. In this section, we illustrate only
the gridding capabilities (no upscaling or simulation is performed) on several examples
representative of realistic settings for reservoir simulation gridding.

Fig. 7 shows adaptive Delaunay (Figs. 7a,b) and Voronoi (Figs. 7c,d) grids generated
in a rectangular domain with polylinear constraints (in bold). The constraints do not
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a) b)

Figure 7: Domain with multiple internal constraints and near-well refinement density specification. (a) Adap-
tive constrained Delaunay triangulation and (b) zoom-in on the multiple feature intersection; (c) Adaptive
constrained Voronoi grid and (d) zoom-in on the multiple feature intersection.

represent realistic reservoir geometry; they are used to demonstrate how our algorithms
handle complex intersection of multiple features at sharp angles. A grid density func-
tion is also specified; it is the sum of several Gaussian functions with peaks centered at
different points, so that the grids are refined near those points. Similar density functions
can be used to refine grids around wells in real reservoir models. Clearly, our algorithms
accurately resolve the constraints as well as adapt to the density distribution.

In Fig. 8, we use a 2D domain with internal features obtained from the projection
of a faulted geological framework. The fault traces are approximated by a set of poly-
lines (shown in bold in Figs. 8b and 8c). In this case, the density function is determined
from the isotropic permeability field K shown in Fig. 8a. More specifically, p= {1, if K <
50md; K, otherwise}. Note that adapting cell sizes to permeability distribution is used
here only to demonstrate the ability of our algorithm to handle discrete target density
functions; it is not necessarily a good grid adaptation strategy in general. Figs. 8b and 8c
illustrate the resulting adaptive Delaunay and Voronoi grids respectively which exactly
resolve all the features with cell faces while providing varying cell sizes according to both
feature geometry and density distribution.

As mentioned in the introduction, sometimes explicit representation of strong het-
erogeneities, especially correlated ones, is required to capture their effect on multi-phase
flow and transport. An example is shown in Fig. 9 (see Section 4.3 for another example
with flow simulation comparisons). Here, instead of adapting grid cell sizes to a density
distribution defined from permeability (as in Fig. 8), we explicitly constrain the grid to
the edges corresponding to high gradients in the permeability field. Permeability map
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Figure 8: (a) Permeability in a hydrocarbon reservoir: logarithmic scale, high values in red, low in blue (range
1075-5000md); (b) Adaptive constrained Delaunay triangulation; (c) Adaptive constrained Voronoi grid.

<)

Figure 9: (a) Permeability in a SPE10 layer: logarithmic scale, high values in red, low in blue; (b) Edges
constraining channel feature; (c) Constrained Voronoi grid.

for this example (Fig. 9a) is taken from a layer of the SPE10 model (Christie and Blunt,
2001) with a channel structure. The layer has 13200 cells. Fig. 9b shows a PSLG obtained
from this permeability map using an edge detection algorithm. Fig. 9c shows the con-
strained Voronoi grid (1626 cells) conforming to this complex graph of linear features.
Notice that smaller cell sizes near the constraints are determined automatically and are
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Figure 10: A fine-scale model for part of the Hugoton field (left) and a coarse simulation grid (right) with grid
refinement near wells. Both models have been exaggerated vertically by a factor of 100 for display.
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Figure 11: Estimated swept volume errors for different number of simulation layer.

influenced by both local and global information about the constraint geometry. Voronoi
grid conforming to dynamic properties of flow solution (e.g., streamlines) can be con-
structed in a similar manner, resulting in flow-based Voronoi grid. Choice of controls on
Voronoi grid might depend on particular problem, but it should always address the goal
of achieving optimal balance between the accuracy of the flow solution and the number
of degrees of freedom (grid cells) required to obtain this solution. This will be illustrated
in the examples of Section 4.3.

4.2 TImpact of up-gridding and global scale-up’

In this example, we examine the impact of degree of coarsening and global scale-up on
building accurate and efficient simulation models. We use a small part of a fine-scale
carbonate model built for the Hugoton field (see Fig. 10 and Dubois et al. 2006a, b). The
model has 120 x 120 x 35 cells and a permeability contrast of about 9 orders of magnitude,
with the lowest permeability being 10~*md. In the following, we investigate the impact
of scale-up methods and up-gridding in both areal and vertical directions on the accuracy

TPortions of this material have been previously published in X. H. Wu et al. (2007c).
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Figure 12: Comparison of oil and water rates calculated on the fine grid and three different coarse grids at the
two producers. All models are scaled up using generic global flow solutions.
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Figure 13: Comparison of oil and water rates calculated on the fine grid and two different coarse grids at Prods.
Both global and local scale-up methods are used on the 12x12 x 35 grid

of the coarse simulation models.

The layering for the simulation grid is important due to strong heterogeneity in the
vertical direction (Fig. 10). Using an optimum layering technique (Stern and Dawson
1999), we can analyze the number of layers required without solving fine-scale flow so-
lutions. Fig. 12 shows estimated swept volume error versus the number of simulation
layers. Clearly, the error increases more rapidly beyond 10 layers. Based on this analysis,
we test models with 10 or more layers.

The simulation models in the tests below have four vertical wells, two water injectors
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(Inj; and Injp) and two producers (Prod; and Prod;). Fig. 10 shows a model with 17 layers,
which are chosen by using the optimum layering algorithm of Stern and Dawson (1999).
A 5x5 areal coarsening is used in that model, except near the wells where smaller grid
blocks are used to better represent the flow near the wells (Fig. 10, right). Thus, the grid
dimension is approximately 24 x 24 x 17. The models are scaled up using generic global
flow solutions calculated on the fine-scale sector model. For the simulation, we fixed the
injection rates of both injectors. For the producers, we fixed their bottom-hole pressures.
The fluids are assumed to be incompressible and the capillary pressures are ignored.

Fig. 12 shows the comparison of water and oil rate at the two producers for three
different coarse grids. It is evident from Figs. 12a and 12c that the coarse model with
10 layers is insufficient to capture the water breakthrough. The results with 17 layers
are better. This is consistent with the swept volume error estimates shown in Fig. 11,
where the swept volume error for 10 layers is about twice as much as the error for 17
layers. Moreover, the model with 12 x12x17 grid performs similarly to the model with
finer areal grids. However, Figs. 12b and 12d indicate that more simulation layers are
required to further improve the results at Prod,. This observation is confirmed by the
Fig. 13, which shows additional simulation results on a 12x12 x 35 grid (no scale-up in
the vertical direction and a factor of 100 scale-up in the areal direction as compared to the
fine-scale sector model).

Table 1: Summary of simulation errors on the 12x12x35 grid due to global and local scale-up.

Global Scale-up | Local Scale-up
(% error) (% error)

Wells Prod; Prod, Prod; | Prod;
Initial Rate -0.24 0.18 1.57 -1.19
Cum. Oil 3.68 3.88 -5.76 | -6.93
Cum. Water -4.00 -3.96 10.89 | 4.44
Wells Inj; Inj, Inj; Inj,
Average Pressure | -3.31 10.7 17.9 62.2

For comparison, the 12x12x 35 grid was scaled up by using a local method (Khan
and Dawson, 2001). The simulation result obtained on this model is shown in Fig. 13.
The errors in flow rates, pressure, and cumulative productions due to local and global
scale-up are given in Table 1. We observe that errors in the initial production rate, which
measure the accuracy of single-phase scale-up in terms of inter-well connectivity, are
small. Local scale-up gives slightly larger errors in cumulative fluid productions, which
is consistent with Fig. 13. However, local scale-up gives much larger error in the time-
averaged injector pressures, implying that the local scale-up failed to capture the overall
connectivity of the fine-scale model.

In addition to the above tests, we also used a uniform hexagonal grid with similar
areal cell size and the same number of layers to repeat the above simulations. With global
scale-up, little change in model accuracy was found. Thus, in this case, the accuracy of
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Figure 16: Oil production rates at the North and South wells.

global scale-up is insensitive to the areal grids, which is expected given the lack of areal
features in the permeability distribution (Fig. 10). However, this is not always the case as
shown by the next example.

4.3 Adaptive gridding with global scale-up?

In the above example, we showed that for carbonate systems, vertical layering is impor-
tant to accurately capture flow solutions on the coarse-grid and when global scale-up
is used, the shape/size of the areal grid does not affect the flow solution significantly.
However, for systems with strong, anisotropically correlated, areal heterogeneity, e.g.,

Portions of this material have been previously published in Wu et al. (2007c).
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channelized features, the shape and size of the areal grid becomes important to obtain an
accurate scale-up.

Here, we consider a fine-scale model with 60 x 220 x 3 cells. Three vertical wells, one
water injector with constant injection rate and two producers with fixed bottom-hole
pressure are placed in the reservoir (Fig. 14).

To remove the effect of layering only areal coarsening is performed in the simulation
models. We created two coarse-scale models, one model with uniform hexagonal grids
(650 cells per layer, 3 layers) and the other with a Voronoi grid adapted to the channels
in the fine-scale model (649 cells per layer, 3 layers) (Fig. 14). A number of parameters
can be used to constrain the Voronoi grids. In this example, we have used the static
permeability property in the fine-scale model. One can also use global flows calculated
on the fine-scale model, such as the generic flows used by global scale-up or specific
well-driven flows for a given production scenario, to further improve the accuracy of the
coarse model. In this case, the flow solutions are strongly correlated to the permeability.
Thus, using the static property is sufficient for upgridding purpose. The hexagonal grid
was chosen because it typically provides better inter-well and overall model connectivity
for channelized systems in comparison to a rectangular grid (Wu et al. 2007a).

We apply global scale-up on the uniform hexagonal grid and both global and local
scale-ups on the adaptive Voronoi grid. Water flooding simulations are performed on
these models, where the fluids are assumed to be incompressible and the capillary pres-
sure is ignored. The simulation results of these models are then compared with the fine-
scale simulation in Figs. 15 and 16. These figures show clearly that the adaptive grid with
global scale-up matches the water saturation profile calculated on the fine-scale model
closely, whereas the adaptive grid with local scale-up shows much larger sweep volume
than the fine-scale model. In this case, the linear boundary condition used by the lo-
cal scale-up smears the channel boundaries, even though these boundaries are precisely
represented by the grid. The smearing occurs in another form on the uniform, hexag-
onal grid; it is caused by the mixing of high and low permeabilities in the coarse-grid
cells. Visually, the smearing clearly affects the swept volume. More subtly, the smearing
introduces larger errors in the initial production rates, as shown in Fig. 16.

Table 2: Water breakthrough and cumulative production error (in comparison to the fine-scale results) in the
two producers.

Water breakthrough Cumulative production
(days) (% error)
Oil Water

Grid: North South North | South | North | South
Fine-scale 1308 2100 - - - -
Hexagonal (global scale-up) | 1278 2191 57 5.4 6.6 23.6
Adaptive (local scale-up) 1370 2100 6.9 7.1 1.0 11.7
Adaptive (global scale-up) 1370 2100 2.5 4.7 2.0 3.3
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The difference in these models can also be studied by observing the water break-
through and cumulative production by the two producers (Table 2). The combination
of adaptive grid and global scale-up provides better accuracy than other combinations,
especially for the water production in the South producer. Thus, to accurately capture
the fine-scale displacement process on a highly channelized reservoir on coarse-grids, it
is important to generate coarse-grids that closely represent the channel geometry and to
use accurate scale-up methods.

5 Concluding remarks

In this paper, we gave an overview of reservoir modeling challenges, emphasizing on
the modeling of complex geometry and heterogeneous properties of reservoir. We then
presented some techniques we recently developed to address these challenges. Our ap-
proach is to combine advanced gridding techniques with an accurate global scale-up
method in constructing coarse simulation models from fine-scale geo-cellular models.
For gridding, we have developed new algorithms for generating adaptive constrained
Voronoi grids in 2D planes. These algorithms can be used to generate adaptive 3D
prismatic grids suitable for reservoir simulations. Several examples were presented to
demonstrate the effectiveness of the algorithms both in terms of honoring polylinear con-
straints and specified density functions. In addition, we presented a brief overview of a
generic global scale-up method we developed and numerical examples demonstrating
its accuracy. In particular, we showed that combining the adaptive constrained Voronoi
gridding with global scale-up is especially effective in capturing the effect of strong cor-
related heterogeneities such as sinuous channels.

While significant progresses have been made over the past few years in the area of
gridding and scale-up (see e.g., Durlofsky 2005), including those presented in this paper,
significant practical challenges remain to be resolved for reservoir modeling. Among
them, accurate and effective representation of reservoir geometry and heterogeneity will
be on the top of the list in the foreseeable future. This is because reservoir descriptions
are becoming more detailed and complex due to better resolutions in remote sensing
(e.g., seismic imaging) technology, increasing amount of data collected from producing
fields (e.g., via permanent down-hole gauges), and better geologic understanding. How-
ever, not every geologic detail matters to the prediction of fluid movement in practice.
Therefore, the perennial challenge in reservoir modeling is to strike the balance between
explicit representation of reservoir geometry and heterogeneity through gridding and
accurate capture of their effects on multi-phase flows via scale-up.
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