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1 Introduction

The equation under consideration is the 1D Schrödinger equation

i∂tu=−∂2
xu+V(x,t)u, x∈R, t>0,

lim
|x|→∞

u(x,t)=0,

u(x,0)=uI(x),

(1.1)

where V denotes a given real potential. We assume that the initial data is compactly
supported, i.e., supp(uI)⊂ [xl ,xr]. Furthermore, we assume that V is constant outside
an interval [xl ,xr], i.e., V(x) = Vl for x < xl, V(x) = Vr for x > xr (t-dependent exterior
potentials will be discussed in Remark 2.5).

Eq. (1.1) is one of the basic equations of quantum mechanics and it arises in many
areas of physical and technological interest, e.g. in quantum semiconductors [28], in elec-
tromagnetic wave propagation [87], and in seismic migration [33]. The Schrödinger equa-
tion is also the lowest order one-way approximation (paraxial wave equation) to the Helm-
holtz equation and is called Fresnel equation in optics [112], or standard parabolic equation
in underwater acoustics [129]. We will return to these applications in the numerical ex-
amples of Section 6.

The solution to (1.1) is defined on the unbounded domain Ω = {(x,t)∈R×R+}. If
one wants to solve such a whole space evolution problem numerically, one has to restrict
the computational (interior) domain Ωint ={(x,t)∈]xl ,xr[×R+} by introducing artificial
boundary conditions or absorbing layers [81, 105]. Note that the method of “exterior
complex scaling” [95] belongs also to this last mentioned class. Alternative methods are
infinite element methods (IEM) [45].

We remark that in some cases the original whole space problem can be transformed
into a differential equation on a finite domain. However, this coordinate transform technique
is restricted to special cases and yields quite complicated differential equations. This
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method was introduced by Grosch and Orszag in [66] and applied to the Schrödinger
equation by Ladouceur in [83].

Artificial boundary conditions are constructed with the objective to approximate the
exact solution of the whole-space problem, restricted to Ωint. Such BCs are called absorb-
ing boundary conditions (ABCs) if they yield a well-posed initial boundary value problem
(IBVP), where some “energy” is absorbed at the boundary. If this approximate solution
actually coincides on Ωint with the exact solution of the whole-space problem, one refers
to these BCs as transparent boundary conditions (TBCs). While TBCs for the Schrödinger
equation are nonlocal in time (and space for multi-dimensional cases), it is often desirable
to construct ABCs that are local in space and/or time to allow for an efficient numerical
implementation [67, 120, 121].

In this review article we describe and compare different approaches of constructing
and discretizing TBCs for the Schrödinger equation in 1D. There already exists a cou-
ple of review articles concerning transparent boundary conditions, e.g. Givoli [62–64],
Hagstrom [67], Tsynkov [130]. But to the authors knowledge there is only one short
comparison paper by Yevick, Friese, and Schmidt [131] on the Schrödinger equation,
comparing the two schemes in [112] and [21] and a second article from Carjan, Rizea,
and Strottman [29] that compares a few approaches in a physical application of quantum
mechanics. Moreover, there is a concise description of the underlying problem from a
physics view point by Frensley [60].

We remark that the key ideas presented here for the Schrödinger equation can also be
generalized to other types of partial differential equations like parabolic problems, where
the TBCs have a similar form [47].

This paper is organized as follows. In Section 2 we will sketch some techniques for
solving the one-dimensional Schrödinger equation and derive several versions of exact
transparent boundary conditions. Their efficient implementation by appropriate dis-
cretizations and/or approximations to obtain fast algorithms will be discussed in Section
3. In Section 4 we describe briefly how the obtained results can be generalized to two
space dimensions and in Section 5 we give an outlook on how artificial boundary condi-
tions can be derived for the Schrödinger equation with a cubic nonlinearity. Finally, sev-
eral numerical examples in Section 6 illustrate the behaviour of the different approaches
in 1D. Two appendices contain useful basic results related to fractional calculus and the
Z-transformation, which are used all along the paper.

2 Transparent boundary conditions for the Schrödinger

equation

Let us set R± = {± x >0} and R+
0 = {x≥0}. It is well-known that (1.1) is well-posed in

L2(R) (see, e.g., [102, 104]):

Theorem 2.1. Let uI ∈ L2(R) and V ∈C([0,∞[,L∞(R)). Then the system (1.1) has a unique
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solution u∈C(R+
0 ,L2(R)). Moreover, the “mass” is preserved, i.e.,

‖u(t)‖L2(R) =
∥∥uI
∥∥

L2(R)
, ∀t≥0.

In this section we sketch the different ways of deriving transparent boundary con-
ditions (TBCs). We start with the classical derivation of the continuous TBC for the IVP
(1.1) and give a reformulation, the pole condition. Secondly, we shall mimic this proce-
dure for the time-discrete Schrödinger equation. This way we derive temporally discrete
TBCs. Thirdly, we shall consider spatially discrete TBCs, and finally we shall review the
fully discrete TBCs.

2.1 Continuous transparent boundary conditions

Continuous TBCs for the Schrödinger equation (1.1) were independently derived by sev-
eral authors from various application fields (cf. [21,37,75,99,100], inhomogeneous exten-
sions are analyzed in [17,22]) and generalization to linear, periodic potentials or piecewise
constant potentials can be found in [55, 56, 61, 86, 101, 134]. Such TBCs are non-local in t
and connect ∂xv(xl,r,t) with v(xl,r,t). As a Dirichlet-to-Neumann (DtN) map they read

∂nv(x,t)=− e−
π
4 i

√
π

e−iVl,rt d

dt

∫ t

0

v(x,τ)eiVl,rτ

√
t−τ

dτ at x= xl ,xr, (2.1)

where n denotes the outwardly unit normal vector at xl, xr.

Remark 2.1. Since the Schrödinger equation has (formally) a similar structure as the heat
equation, analogous DtN-maps for the heat equation were already given by Carslaw and
Jaeger in 1959 [30].

These boundary conditions may be derived from Eq. (1.1) as follows: With the de-
composition L2(R) = L2(Ω)⊕L2(Ωr∪Ωl) for Ω =]xl ,xr[, Ωl =]−∞,xl], and Ωr = [xr,∞[,
Eq. (1.1) is equivalent to the coupled system





(i∂t+∂2
x)v=V(x,t)v, (x,t)∈Ω×R+,

∂xv(x,t)=∂xw(x,t), x= xl,r, t>0,
v(x,0)=uI(x), x∈Ω,

(2.2)





(i∂t+∂2
x)w=Vl,rw, (x,t)∈ (Ωl∪Ωr)×R+,

w(x,t)=v(x,t), x= xl,r, t>0,
lim|x|→∞ w(x,t)=0, t>0,

w(x,0)=0, x∈Ωl∪Ωr.

(2.3)

Fig. 1 explains this splitting of the spatial domain R into interior and exterior prob-
lems and shows the basic idea of constructing the TBCs.
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probleminterior problem
left exterior

problem
right exterior

(x,t)

x xL R

output: input:

L(x ,t)Lx(x ,t)
Dirichlet data Neumann data

v

vw

Figure 1: Decomposition of the domain and basic idea of the construction of the TBCs.

Next we apply a Laplace transformation in t to the exterior problems (2.3). The
Laplace transformation with respect to the time variable t is defined by

ŵ(s) :=L(w)(s) :=
∫

R+
w(t)e−stdt, (2.4)

where s is the time covariable.

In the following we focus on the derivation of the right TBC at xr. The Laplace trans-
formation of (2.3) (on Ωr) reads

isŵ+∂2
xŵ=Vrŵ, x∈Ωr . (2.5)

The solution to this ordinary differential equation can be written as

ŵ(x,s)= A+(s)e
+
√
−is+Vr x+A−(s)e−

+
√
−is+Vr x, x> xr , (2.6)

where the branch of the square root +
√

is taken such that the real part is positive. How-
ever, since the solution must be in L2(Ωr), the coefficient A+ must vanish. Using the
Dirichlet data at the artificial boundary yields

ŵ(x,s)= e−
+
√
−is+Vr(x−xr)L(v(xr ,·))(s),

and hence

∂xŵ(x,s)|x=xr =− +
√
−is+Vr ŵ(x,s)|x=xr . (2.7)

The analogous condition at the left boundary is

−∂xŵ(x,s)|x=xl
=− +

√
−is+Vl ŵ(x,s)|x=xl

.
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Inserting its inverse Laplace transformation into (2.2) yields

(i∂t+∂2
x)v=V(x,t)v, (x,t)∈Ω×R+,

∂nv(x,t)=L−1(− +

√
−i·+Vl,r v̂(x,·))(t)

=

t∫

0

f (t−τ)v(x,τ)dτ, x= xl,r, t>0,

v(x,0)=uI(x), x∈Ω,

(2.8)

where

L( f )(s)= F(s)=− +

√
−is+Vl,r

and ∂n is the outwardly directed normal derivative. By construction u coincides with v
on Ω.

For a constant potential V = Vr the Schrödinger equation can formally be factorized
into left and right traveling waves (cf. [21]):

(
∂x− e−i π

4
+
√

∂t+iVr

)(
∂x + e−i π

4
+
√

∂t+iVr

)
u=0, x> xr. (2.9)

In the potential-free case (Vr = 0) the term
√

∂t = ∂1/2
t can be interpreted as a fractional

1/2-time derivative (cf. (A.2)). Allowing at x = xr only for outgoing waves one recovers
formally the right TBC (2.1).

Remark 2.2 (Impedance Boundary Condition). A simple calculation shows that (2.1) is
equivalent to the impedance boundary condition [99]

u(x,t)=− ei π
4√
π

∫ t

0

∂nu(x,τ)e−iVl,r(t−τ)

√
t−τ

dτ, at x= xl,r, (2.10)

in the form of a Neumann-to-Dirichlet (NtD) map.

Remark 2.3 (Inhomogeneous TBC). The (homogeneous) TBC (2.1) was derived for the
situation where an initial wave function is supported in the computational domain ]xl ,xr[,
and it is leaving this domain without being reflected back. If an incoming wave function
uin(t) is given at the right boundary (e.g. a left traveling plane wave), the inhomogeneous
TBC

∂x

(
u(xr,t)−uin(xr,t)

)
=− e−i π

4√
π

e−iVrt d

dt

∫ t

0

(u(xr,τ)−uin(xr,τ))eiVrτ

√
t−τ

dτ, (2.11)

has to be prescribed at x= xr (cf. [17, 22] for details).
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Remark 2.4 (Noncompactly supported initial data). If the initial data uI(x) is not com-
pactly supported inside the computational domain ]xl ,xr[, Levy derived a TBC [85],
which has applications in radio wave propagation [87]. Assuming that the initial function
uI(x) is continuous and ∂xuI(x) is integrable for x> xr, the right TBC reads

∂xu(xr,t)=− e−
π
4 i

√
π

d

dt

∫ t

0

u(xr,τ)√
t−τ

dτ+
e−

π
4 i

√
πt

∫ ∞

xr

uI
x(x)e

i(x−xr)2

t dx (2.12)

in the potential-free situation. Clearly, if uI(x) = 0 for x > xr then (2.12) reduces to the
previously obtained right TBC (2.1) in the potential-free case.

Remark 2.5 (Time-dependent exterior potential). Consider the Schrödinger equation with
exterior potentials that only depend on time, i.e., V(x,t)|Ωl,r

=Vl,r(t). The following gauge
change in (1.1) then reduces this case to zero exterior potential [9]:

ψl,r = eiVl,r(t)ul,r, with Vl,r(t)=
∫ t

0
Vl,r(s)ds, ∀t>0.

The resulting TBC is then given by

∂nu+e−i(π/4−Vl,r(t))∂1/2
t (e−iVl,r(t))u)=0, x= xl,r. (2.13)

Remark 2.6 (Space- and time-dependent exterior potential). In the case of a space and
time varying potential, the situation is much more complicated. There is no easy way
for deriving the TBC. A direction investigated in [11] is to use the theory of fractional
pseudo-differential operators. Based on these techniques, families of approximate arti-
ficial boundary conditions can be derived. A first-order approximation is obtained by
using the BC (2.13) with the definition

Vl,r(t)=
∫ t

0
V(xl,r,s)ds, ∀t>0.

A second-order approximation yields

∂nu+e−i(π/4−Vl,r(t))∂1/2
t

(
e−iVl,r(t))u

)

+
i

4
∂xV|x=xl,r

eiVl,r(t) It

(
e−iVl,r(t))u

)
=0, (2.14)

with It the integration operator over [0,t]. Higher-order approximations to the TBC can
be derived by computing additional correction terms in the asymptotic expansion.

We summarize the procedure to derive the continuous TBC:
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1. Split original problem into coupled equations: interior and exterior problems.

2. Apply a Laplace transformation (2.4) in time t.

3. Solve the ordinary differential equations in x.

4. Allow only “outgoing” waves by selecting the decaying solution as x→±∞.

5. Match Dirichlet and Neumann values at x= xl, x= xr.

6. Apply the inverse Laplace transformation.

For the IBVP on Ω with a DtN- or a NtD-TBC, existence and uniqueness of the solu-
tion has been proved (see, e.g., [9]).

2.2 An alternative formulation — the pole condition

The pole condition approach [106, 107] might be viewed as an alternative derivation of
the TBC, which avoids step 3, the explicit solution of the ordinary differential equations
in x, and yields an alternative local approximation of the TBC, see Section 3.6. It was
developed by Schmidt, Hohage and Zschiedrich for Helmholtz problems on unbounded
domains [76, 115]. Starting from the time-transformed exterior equation (2.5) a Laplace
transformation is applied to the spatial variable x with covariable q

isW(q,s)+q2W(q,s)−qŵ(xr,s)−∂xŵ(xr,s)=VrW(q,s). (2.15)

Solving for W(q,s) one obtains

W(q,s)=
ŵ(xr,s)+

∂xŵ(xr,s)
+
√
−is+Vr

2(q− +
√
−is+Vr)︸ ︷︷ ︸

T1

+
ŵ(xr,s)− ∂xŵ(xr,s)

+
√
−is+Vr

2(q+ +
√
−is+Vr)︸ ︷︷ ︸

T2

, (2.16)

where T1, T2 denote the two terms in the partial fraction decomposition of W(q,s) =
T1+T2.

In deriving the exact boundary condition (2.7) we used an asymptotic decay argument
to discard the first term in (2.6). To obtain the same for the pole condition approach we
use the following closely related argument: Since s lies in the right half plane +

√
−is+Vr

takes values in the fourth quadrant. Thus the terms T1 and T2 can be distinguished by
the position of their poles w.r.t. q. Transforming back to space domain it can be seen that

the term T1 corresponds to the term A+(s)e
+√−is+Vr x in (2.6), whereas T2 corresponds to

A−(s)e−
+
√
−is+Vr x. Thus one can exclude the term T1 by forcing W to be analytic w.r.t. q

in some half-plane containing the fourth quadrant but not the second quadrant. This is
equivalent to

ŵ(xr,s)+
∂xŵ(xr,s)
+
√
−is+Vr

=0,
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which is condition (2.7). Following these arguments we make the following definition of
the pole condition for the Schrödinger equation.

Definition 2.1. A solution ŵ(x,s) of

isŵ+∂2
xŵ=Vrŵ for x∈Ωr

satisfies the pole condition for the Schrödinger equation if, for all s with Res > 0 fixed,
its Laplace transform in the variable x has a holomorphic extension to some half-plane
containing the fourth quadrant but not the second quadrant.

We have the following theorem.

Theorem 2.2. If and only if a function w obeys the pole condition, then the transparent boundary
condition

∂xŵ(x,s)|x=xr =− +
√
−is+Vr ŵ(x,s)|x=xr

holds.

While the continuous TBCs (2.1) fully solve the problem of confining the spatial do-
main to a bounded interval, their numerical discretization is not trivial at all and has at-
tracted lots of attention. In the following subsections we will present different approaches
to derive (semi)discrete TBCs and ABCs for the 1D Schrödinger equation (1.1).

Finally, we show in Fig. 2 the structure of the different derivation strategies explained
in the following two sections. Note that the arrows in Fig. 2 stand for a certain close
relation between the approaches; they do not mean ’can be derived from’.

2.3 Temporally discrete transparent boundary conditions

We consider the problem (1.1) discretized uniformly in time with the step size ∆t by an
A-stable multi-step method, cf. [69, Chapter V.1], and denote by un the approximation to
u(x,n∆t):

i

∆t

K

∑
j=0

αju
n−j =

K

∑
j=0

β j

(
−∂2

x+V
)

un−j, n≥K. (2.17)

Analogously to Step (1) of Section 2.1 we split the problem into interior and exterior
problems (with respective solutions vn and wn). Instead of applying the Laplace trans-
formation (Step (2)) w.r.t. t to equation (1.1), we apply a Z-transformation (see Appendix
B) to (2.17). The Z-transformation of a sequence (un) is defined by

Z(un)= û(z) :=
∞

∑
n=0

un z−n, z∈C, |z|> R(Z(un)), (2.18)

where R(Z(un)) is the radius of convergence of the Laurent series Z(un).
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discrete convolution

_
s✔

+of symbol (by quadrature rule)

convolution kernel 3.2 discretized TBCs(rational) approximations

spatially discrete TBCs

Perfectly Matched
Layer (PML)

temporally discrete TBCs

approximation of

2.32.4 fully discrete TBCs2.5

Pole Condition  2.2

3.4

3.3

 3.5

2.1continuous TBC

Figure 2: Different approaches to derive (semi)discrete TBCs and ABCs for the 1D Schrödinger equation (1.1).

The Z-transformation of (2.17) yields the second order ordinary differential equation:

(
∂2

x+i
δ(z)

∆t
−Vr

)
ŵ(z)=0, x> xr , (2.19)

where

δ(z)=

(
K

∑
j=0

αjz
K−j

)/(
K

∑
j=0

β jz
K−j

)

is the generating function of the time integration scheme. On top of the standard assumption
supp(uI)⊂ [xl ,xr] we made here the following assumption on the start-up procedure for
the multi-step method (2.17):

supp(uj)⊂ [xl ,xr], 0≤ j≤K−1.

Example 2.1. The trapezoidal rule discretization is given by

i
un+1−un

∆t
=−∂2

x

un+1+un

2
+

Vn+1(x)un+1+Vn(x)un

2
, x∈R,∀n∈N0,

lim
|x|→∞

un(x)=0, ∀n∈N0,

u0 =uI(x) given for x∈R.

(2.20)

This method is also known as the Crank-Nicolson scheme and its generating function is
δ(z)=2(z−1)/(z+1).
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Example 2.2. For the implicit Euler method we have δ(z)=(z−1)/z.

Eq. (2.19) is the starting point for deriving the TBC as well as several ABCs for (2.17).
The semi-discrete TBC is obtained by solving the differential equation (2.19) (Step (3)).
Its general solution is (cf. (2.6)):

ŵ(x,z)= A+(z)ei
+
√

i
δ(z)
∆t −Vr x+A−(z)e−i

+
√

i
δ(z)
∆t −Vr x, x> xr. (2.21)

In order for un to lie in L2(]xr ,∞[), A− must vanish. This is due to the fact that δ maps
{|z|>1} into the right half-plane {Re(z)>0} (due to A-stability), and hence

Re

(
−i

+

√
i
δ(z)

∆t
−Vr

)
>0, ∀|z|>1. (2.22)

Differentiating ŵ(x,z) w.r.t. x leads to

Z(∂xwn)(z)= i
+

√
i
δ(z)

∆t
−VrZ(wn)(z), (2.23)

at x = xr. An inverse Z-transformation yields an expression for ∂xwn(xr) in terms of
wk(xr), 0≤k≤n. The resulting TBC is a discrete temporal convolution which depends on
the generating function δ.

Resuming Example 2.1 we finally obtain for the interior problem

i
vn+1−vn

∆t
=−∂2

x

vn+1+vn

2
+

Vn+1(x)vn+1+Vn(x)vn

2
, x∈Ω,∀n∈N0,

v0(x)=uI(x), x∈Ω,

∂nvn+1 =
n+1

∑
k=0

ψ
(l,r)
k vn+1−k, at x= xl ,xr,

(2.24)

where the weights ψ
(l,r)
n are given by

ψ̂(z)=Z(ψ
(l,r)
n )(z)= i

+

√
i
δ(z)

∆t
−Vl,r .

The weights ψn can be obtained either analytically or numerically, depending on δ and the
potential Vl,r. In case of the trapezoidal rule and a vanishing potential, one gets explicitly
the coefficients (see for example [9, 112–114, 131])

ψk =−e−
iπ
4

√
2

∆t
(−1)kψ̃k, k∈N0,

(ψ̃0, ψ̃1,ψ̃2,ψ̃3,ψ̃4,ψ̃5,···)=

(
1,1,

1

2
,
1

2
,
1·3
2·4 ,

1·3
2·4 ,···

)
.

(2.25)
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In a very similar way, the following formula can be derived for an approximation of the
NtD map (2.10). From (2.23) one obtains

Z(wn)(z)= F

(
δ(z)

∆t

)
Z(∂xwn)(z), with F(r)(s)=

1

i +
√

is−Vr

(2.26)

which leads to

vn+1 =
n+1

∑
k=0

ψ̌k∂nvn+1−k, at x= xl ,xr. (2.27)

In case the potential is 0 and the trapezoidal rule is used, these can be calculated analyti-
cally. One obtains

ψ̌n =−e
iπ
4

√
∆t

2
ψ̃k

with ψ̃n as in (2.25). This is a trapezoidal rule time discretization of the fractional integral
operator of order 1/2.

This is a special case of the convolution quadrature developed by Lubich [91, 92],
where for the Laplace transform F(s)=L( f )(s) of the kernel f (t) the convolution is ap-
proximated as

∫ (n+1)∆t

0
f
(
(n+1)∆t−τ

)
∂nv(τ)≈

n+1

∑
k=0

ψ̌k∂nvn+1−k,

with weights defined by

Z(ψ̌
(l,r)
n )(z)= F(l,r)

(
δ(z)

∆t

)
. (2.28)

In the general case the weights have to be calculated numerically, which can be done
efficiently and accurately using the Fast Fourier Transforms, see [92].

One advantage of the procedure of this subsection is that we can expect to obtain a
stable, semi-discrete IBVP. The trapezoidal rule discretization of the Schrödinger equa-
tion on the real line is stable. Using the time discrete approximation of the convolution
integral based on the trapezoidal rule, the result of the restricted problem coincides with
the original problem inside the computational domain, so the method is unconditionally
stable (cf. Theorems 3 and 4 in [9]).

Furthermore, when using an internal spatial discretization based on conforming finite
elements, also the fully discrete scheme is unconditionally stable (cf. Section 3.4 in [9]).

Remark 2.7 (Time discrete pole condition). As for the continuous case we can reformu-
late the transparent boundary condition as the pole condition, now for ŵ(x,z) instead of
ŵ(x,s).
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2.4 Spatially discrete transparent boundary conditions

Spatially discrete TBCs are obtained if instead of solving the ordinary differential equa-
tion (2.5) (Step (3)), a difference equation w.r.t. the spatial variable is solved.

Spatially semi-discrete TBCs are derived by Alonso-Mallo and Reguera in [4, 6] and
by Lubich and Schädle in [93]. There, the Schrödinger equation (1.1) discretized in space
using the standard second order difference quotient

D2
xuj =

uj−1−2uj+uj+1

∆x2
(2.29)

is considered. This provides the following system of ordinary differential equations in
time

i∂tuj(t)=−D2
xuj(t)+Vuj(t), j∈Z, t>0,

lim
|j|→∞

uj(t)=0, t>0,

uj(0)=uI(j∆x), j∈Z,

(2.30)

where xj = xl + j∆x, j ∈ Z form a uniform grid and uj(t) denotes an approximation to
u(xj,t). We choose ∆x and J such that xJ = xr. Again, we assume here for simplicity that
V is constant.

As before the spatially discrete Schrödinger equation (2.30) is split into coupled inte-
rior and exterior problems (Step 1). Applying a Laplace transformation in time t (Step 2)
to the exterior problems one obtains for the right exterior problem

isŵj(s)+D2
xŵj(s)=Vrŵj(s), j> J. (2.31)

The solution to this difference equation is given as (cf. (2.6))

ŵj(s)= A+(s)χj−J(s)+A−(s)χ−(j−J)(s), j> J, (2.32)

where χ(s), χ−1(s) are the roots of the characteristic polynomial

X2−2
(
1−∆x2(is−Vr)/2

)
X+1=0. (2.33)

Choosing

χ(s)=1−∆x2

2
(is−Vr)+

+

√
∆x2

2
(is−Vr)

(∆x2

2
(is−Vr)−2

)
, (2.34)

A− must vanish. From the coupling condition ŵJ = v̂J we obtain

A+ = v̂J(s)

and hence the spatially discrete right TBC is

v̂J−1(s)=χ−1(s)v̂J(s).
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The DtN operator at the right boundary is thus given by

v̂J−1(s)− v̂J(s)=
(
χ−1(s)−1

)
v̂J(s). (2.35)

An analogous result holds for the left boundary.
Transforming back to the time-domain one obtains finally

(
i∂t+D2

x

)
vj(t)=V(xj,t)vj(t), j=0,··· , J, t≥0,

vJ−1(t)−vJ(t)=L−1
(
(χ−1(·)−1)v̂J(·)

)
(t), t≥0, (2.36)

vj(0)=uI(xj), j=0,··· , J.

Spatially discrete NtD boundary conditions can be derived in a very similar way:

vJ(t)=L−1
((

χ−1(·)−1
)−1(

v̂J−1(·)− v̂J(·)
))

(t), t≥0. (2.37)

2.5 Fully discrete transparent boundary conditions

A combination of temporally and spatially discrete TBCs yields fully discrete TBCs for
problem (2.2). While one could use here any spatial discretization (that is regular in the
exterior domain), we consider here the example of second order finite differences, i.e.,

i
un+1

j −un
j

∆t
=−D2

x

un+1
j +un

j

2
+

Vn+1
j un+1

j +Vn
j un

j

2
, j∈Z, n∈N0,

lim
|j|→∞

un
j =0, n∈N0,

u0
j =uI(j∆x), j∈Z,

(2.38)

where D2
x denotes the standard second order difference quotient (2.29) and xj = xl + j∆x,

j∈Z is a uniform grid. The right artificial boundary is located at xJ = xl + J∆x = xr and
the left boundary at x0 = xl. Again we apply the Z-transformation (2.18) and obtain, as a
discrete analogue of (2.19) in the right exterior domain:

(
D2

x+i
δ(z)

∆t
−Vr

)
ŵj(z)=0, j> J. (2.39)

This is a second-order difference equation with constant coefficients which reads explicitly

ŵj+1(z)−2

(
1−∆x2

2

(
i
δ(z)

∆t
+Vr

))
ŵj(z)+ŵj−1(z)=0, j> J. (2.40)

Its general solution takes the form (cf. (2.32))

ŵj(z)= A+(z)χj−J(z)+A−(z)χ−(j−J)(z), j≥ J−1, (2.41)
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where χ(z) and χ(z)−1 are the roots of the quadratic equation (cf. (2.33)):

X2−2

(
1−∆x2

2

(
i
δ(z)

∆t
+Vr

))
X+1=0. (2.42)

In order to have decaying solutions ŵj(z) outside of the computational domain (i.e., for
j→∞) we have to choose the branch of the square root such that |χ(z)|>1.

Finally we obtain the Z-transformed right discrete TBC [15]:

ûJ−1(z)=χ−1(z)ûJ(z). (2.43)

The transformed boundary kernel χ(z) is calculated as (cf. [15, 48, 49, 116]):

χ(z)=1−∆x2

2

(
i
δ(z)

∆t
−Vr

)
+ +

√
∆x2

2

(
i
δ(z)

∆t
−Vr

)(
∆x2

2

(
i
δ(z)

∆t
−Vr

)
−2

)
. (2.44)

The inverse Z-transform of χ then defines the convolution coefficients for the discrete
TBCs:

(χn) :=Z−1(χ(z)), n∈N0.

Since the magnitude of χn does not decay as n→∞ (χn behaves like const·(−1)n for
large n), it is more convenient to use a modified formulation of the discrete TBCs (cf. [49]).
We introduce

ŝ(z) :=
z+1

z
χ̂(z), and (sn)=Z−1{ŝ(z)}, (2.45)

which satisfy

s0 =χ0, sn =χn+χn−1 =O
(
n− 3

2
)
, n∈N. (2.46)

The corresponding Laurent series of ŝ(z) converges (and is continuous) for |z|≥1 because
of the decay (2.46).

In physical space the right discrete TBC (written as DtN map) then reads (cf. [49,
Thm. 3.8]):

un
J −un

J−1 =−
n

∑
k=1

sn−kuk
J +un−1

J−1 , n∈N, (2.47)

with the explicitly calculated convolution weights:

sn =(−iR+σ)δ0
n+(1+iR+σ)δ1

n+γe−inϕ Pn(µ)−Pn−2(µ)

2n−1
, (2.48)

ϕ=arctan
2R(σ+1)

R2−2σ−σ2
, µ=

R2+2σ+σ2

√
(R2+σ2)(R2+(σ+2)2)

,

σ=∆x2Vr, R=
∆x2

∆t
γ= i 4

√
(R2+σ2)(R2+(σ+2)2)eiϕ/2.
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Here Pn denotes the Legendre polynomials (P−1≡P−2≡0), and δk
n is the Kronecker sym-

bol.
In order to formulate the discrete TBC as in (2.43) it is necessary that the discrete initial

condition vanishes at the two adjacent (spatial) grid points appearing in (2.43). Here, we
chose to formulate the discrete TBC at the boundary of the computational interval and
one grid point in the interior. Hence we have assumed that the initial condition satisfies

u0
0 =u0

1 =0, u0
J−1 =u0

J =0.

However, without any change to our subsequent analysis one could also prescribe the
discrete TBC at j = −1,0 and at j = J, J+1, respectively. We remark that a strategy to
overcome this restriction (supp(uI)⊂ [xl ,xr]) can be found in [49, 54].

We remark that other interior discretization schemes for the Schrödinger equation
could be used (e.g. a fourth order Numerov-type discretization [98]). Also, discrete TBCs
for systems of Schrödinger equations [135], for discrete predictor-corrector Schrödinger-
Poisson systems [51], for the case of a periodic potential at infinity [61] or a linear exte-
rior potential [50] and for split-step methods [52, 53] were derived. Finally, in [136] it is
shown how to extend these results on discrete TBCs for solving nonlinear Schrödinger
equations.

Let us note that the limit ∆x → 0 of the discrete TBCs of Arnold and Ehrhardt [49]
coincides with the temporally semi-discrete TBC of Schmidt and Deuflhard [112] and of
Schädle, cf. [108].

3 Discretizations and approximations

In Section 2 we presented several versions of exact transparent boundary conditions. The-
oretically they completely solve the problem of cutting off the unbounded exterior do-
main. However, for an efficient implementation the TBCs have to be discretized and/or
approximated. To this end there exist three main approaches in the literature which
we shall describe in this section: The first strategy consists in direct discretizations of
the TBC by quadrature rule and is briefly reviewed in Section 3.2. In Section 3.3 we
present approximations of the convolution in TBC based on rational approximations for
the Fourier-symbol of the convolution operator. In Section 3.4 the convolution kernel
is approximated by finite sums of exponentials. The approximations in 3.3 and 3.4 can
be interpreted both in terms of discretization of the convolution and of approximations
for the Fourier-symbol of the TBC kernel, but the derivations of the two approaches are
distinctly different.

3.1 Space discretization

In the numerical experiments in Section 6 we will use second order finite differences
(2.29) and finite elements of order 1 and 2 to discretize in space. While the Neumann data
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is easily incorporated in a finite element setting, there are several ways of approximating
∂n in the finite difference setting. Let ∆x be the grid width, then a first order accurate
approximation is given by

∂nu(xl,r)≈





u(xl)−u(xl +∆x)

∆x
,

u(xr)−u(xr−∆x)

∆x
.

(3.1)

Second order accurate approximations are obtained with

∂nu(xl,r)≈





u(xl−∆x)−u(xl +∆x)

2∆x
,

u(xr +∆x)−u(xr−∆x)

2∆x
,

(3.2)

or by using a correction term in (3.1)

∂nu(xl,r)≈





u(xl)−u(xl +∆x)

∆x
+

∆x

2
∂2

xu(xl),

u(xr)−u(xr−∆x)

∆x
+

∆x

2
∂2

xu(xr).

(3.3)

Here for ∂2
xu(xl,r) the PDE is inserted.

3.2 Discretizations of the convolution integrals by quadrature formulas

In Section 2.3 a very natural way to approximate the convolution integrals by convolution
quadrature was presented. The convolution weights there were obtained by the same
time-integration scheme that is used in the interior. However the first idea to incorporate
the TBC in a numerical scheme is an ad-hoc discretization. This was done e.g. by Mayfield
[96] and by Baskakov and Popov in [21]. For a more systematic discretization approach
we refer to [73].

3.2.1 Discretization of Mayfield

Mayfield [96] proposed the approximation for the TBC in the form (2.10)

∫ tn+1

0

ux(xr,tn+1−τ)e−iVrτ

√
τ

dτ

≈ 1

∆x

n

∑
k=0

(un+1−k
J −un+1−k

J−1 )e−iVrk∆t
∫ tk+1

tk

dτ√
τ

=
2
√

∆t

∆x

n

∑
k=0

(un+1−k
J −un+1−k

J−1 )e−iVrk∆t

√
k+1+

√
k

, (3.4)
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Figure 3: Discretized TBC of Mayfield: Stability regions.

where the left-point rectangular quadrature rule and (3.1) are used to discretize the nor-
mal derivative. This leads to the following discretized TBC for the Schrödinger equation:

un+1
J −un+1

J−1 =
∆x

2B
√

∆t
un+1

J −
n

∑
k=1

(
un+1−k

J −un+1−k
J−1

)
ℓ̃k, (3.5)

with

B=− 1√
2π

ei π
4 , ℓ̃k =

e−iVrk∆t

√
k+1+

√
k

, k=1,2,··· .

On the fully discrete level this BC is no longer perfectly transparent. Moreover, the re-
sulting scheme for the IBVP exhibits a stability problem. With a homogeneous Dirichlet
BC at j=0 and the discretized TBC (3.5), Mayfield obtained the following result:

Theorem 3.1 ([96]). The numerical scheme consisting of the Crank-Nicolson/finite-differences in
the interior domain j=1,··· , J−1 (cf. (2.38)) and the discretized TBC (3.5) is stable, if and only if

4π
∆t

∆x2
∈
⋃

j∈N0

[
(2j+1)−2,(2j)−2

]
. (3.6)

This shows that the chosen discretization of the TBC (3.5) destroys the unconditional
stability of the underlying Crank-Nicolson scheme (2.38). The stability regions of Theo-
rem 3.1 are illustrated in Fig. 3 (c = 4π) as dark areas. The light intervals are regions of
instability.

3.2.2 Discretization of Baskakov and Popov

A similar strategy, but using a higher-order quadrature rule for the l.h.s. of (2.1) was
introduced by Baskakov and Popov in [21] for Vr = 0. They used a piecewise linear ap-
proximation of the function u(xr,τ) in the integral of the TBC (2.1). Using u(xr,0) = 0
yields

∫ tn+1

0

d

dt
u(xr,τ)

dτ√
tn+1−τ

≈ 2

∆t

(
un+1

J −
n

∑
k=1

γkun+1−k
J

)
(3.7)

with the weights

γk =
2

(
√

k+1+
√

k)(
√

k+
√

k−1)(
√

k+1+
√

k−1)
. (3.8)
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In [21] finite differences (2.29) are used together with (3.2).
Recently, Sun and Wu [124] analyzed the standard Crank-Nicolson scheme for the

interior domain in conjunction with the above discrete convolution (3.7) extended to non-
zero potential, but using (3.1) instead of (3.2). They proved the unique solvability of
their algebraic system, unconditional stability and convergence with the order O(∆x3/2+
∆t3/2∆x−1/2). Moreover, this approach typically induces less numerical reflections than
the Mayfield-type discretization (3.5).

3.3 Rational approximations of the Fourier symbol

In pseudo differential calculus the Laplace transform of the kernel is identified with the
Fourier symbol. Now we consider strategies that directly approximate the Fourier sym-
bol by a rational function.

As we have seen, the fractional derivative operator ∂1/2
t in the continuous TBC is

nonlocal in time. This is due to the non-polynomial nature of its Fourier symbol, which
reads +

√
iω, where +

√· denotes the branch of the square root with positive real part. In
the spatially discrete case the Fourier symbol is given in (2.34). A rational approximation
of these symbols, however, allows for a local in time treatment of the corresponding
approximated convolution. For all of the subsequent methods some a priori information
on the dominant wavenumber of the solution at the boundary is needed. Otherwise the
reflection coefficient of outgoing waves can be unacceptably large.

3.3.1 Approaches of Bruneau-Di Menza, Szeftel, Shibata, and Kuska

Bruneau and Di Menza [27, 40] considered the continuous TBC in Fourier space (for its
Laplace analogue cf. (2.7)):

∂xû(xr,ω)=−eiπ/4 +
√

iω û(xr,ω). (3.9)

and approximate the symbol +
√

iω by a rational function

Rm(iω)= am
0 +

m

∑
k=1

am
k iω

iω+dm
k

=
m

∑
k=0

am
k −

m

∑
k=1

am
k dm

k

iω+dm
k

,

am
k >0, k=0,··· ,m, dm

k >0, k=1,··· ,m.

They require Rm(iω) to interpolate +
√

iω at 2m+1 distinct points

{ω0,(±iωk)k=1,···,m}, ωk ∈ [0,ρ], and ωk+1 >ωk, k=0,··· ,m,

for some ρ>0. In order to compute the coefficients am
k and dm

k , they define the set Em of all

rational functions r(z)=Pm(z)/Qm(z) (with deg Pm=deg Qm=m) which interpolate +
√

iω
on the previous family of points. Then, they choose Rm ∈Em by minimizing ‖Rm(iω)−
+
√

iω‖L2(0,ρ).
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Thus, the approximation of (3.9) becomes

∂xû(xr,ω)=−eiπ/4

[(
m

∑
k=0

am
k

)
û(xr,ω)−

m

∑
k=1

am
k dm

k

iω+dm
k

û(xr,ω)

]
. (3.10)

Following an idea of Lindmann [89], they introduce auxiliary functions ϕk = ϕk(t)k=1,···,m
at the boundary which satisfy

1

iω+dm
k

û(xr)= ϕ̂k, k=1,··· ,m.

After a Fourier inversion, ϕk satisfy the ordinary differential equation

dϕk

dt
+dm

k ϕk =u(xr,t), ϕk(0)=0, k=1,··· ,m.

Therefore, the boundary conditions become local in time and read




∂nu=−e−
iπ
4

[(
m

∑
k=0

am
k

)
u−

m

∑
k=1

am
k dm

k ϕk

]
, on x= xr, t>0,

dϕk

dt
+dm

k ϕk =u(xr,t), t>0, k=1,··· ,m,

ϕk(0)=0, t>0, k=1,··· ,m.

(3.11)

In [126], Szeftel also uses a rational approximation of +
√

iω but proposes a different
choice of coefficients. As a first attempt he considers the Padé approximation [20] leading
to

am
0 =0, am

k =
1

mcos2
(

(2k+1)π
4m

) , dm
k = tan2

(
(2k+1)π

4m

)
. (3.12)

As an alternative he proposes to compute the coefficients of the rational approximation
by optimizing the reflection coefficient

RC(ω)=

−
√

ω−iam
0 −i

m

∑
k=1

am
k (−ω)

−ω+dm
k

√
ω−iam

0 −i
m

∑
k=1

am
k (−ω)

−ω+dm
k

, (3.13)

where ω ∈R is again the Fourier-dual of t. The main difference with the Di Menza-
Bruneau work is that Szeftel does not impose interpolation but only approximation.

The same idea of approximating the square root symbol by a rational function was
also presented by Shibata [118] (linear approximation with two intersection points to
choose) and Kuska [82] (1/1-Padé approximation about some dominant frequency ω0

to choose). However, their subsequent discretizations (based on finite differences) are
less systematic than in the papers [27, 40, 126]. Due to the low approximation order the
numerical results are also inferior.
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3.3.2 Approach of Fevens and Jiang

In [59] Fevens and Jiang propose the following family of ABCs:

m

∏
l=1

(
i

∂

∂x
+al

)
u=0, (3.14)

for any m∈N. For the right BC all wave numbers al can be chosen arbitrarily positive
(and negative for the left BC). From the shape u= ei(kx−ωt) of a plane wave one sees that
all waves with a wavenumber k = al are perfectly absorbed at the boundary. The well-
posedness for this class of (continuous) ABCs is established in [59].

Next we shall compare this approach to the rational approximations (cf. Section 3.3.1)
of the dispersion relation of the Schrödinger equation (in the right exterior domain):

k= +
√

ω−Vr. (3.15)

Using the correspondence i∂x ↔−k in (3.14), along with k2 = ω−Vr for the even powers
of k yields a (real valued) rational approximation to (3.15):

k= R(ω).

With the low order choices m=2 or m=3; a1 =a2 =a3 one recovers, respectively, the ABCs
of Shibata [118] and of Kuska [82].

3.3.3 Approach of Alonso-Mallo and Reguera

Alonso-Mallo and Reguera [4, Section 2] extended the rational approximation of Section
3.3.1 for +

√
iω to interpolating rational functions q(z) = Pl(z)/Qm(z). Here, Pl, Qm are

relatively prime polynomials of degree l and m respectively, such that +
√

z is interpolated
at l+m+1 nodes. This class of ABCs includes many of the previous ABCs from the lit-
erature (like [59,82,118]). However, for such continuous ABCs the authors of [4] showed
that the resulting IBVP can only be well-posed if either l = m or l = m+1. But the spa-
tial semi-discretization may then still be weakly ill-posed, with increasing instabilities for
higher order ABCs. In [5, 7] Alonso-Mallo and Reguera considered the analogous ratio-
nal approximations (switching here from iω to s) for the square root function (2.34) of the
spatially discrete TBC (2.35) written as:

r(η;∆x)=1−∆x2

2
η+

+

√
∆x2

2
η
(∆x2

2
η−2

)
(3.16)

with the abbreviation η = is−Vr. In [4, 6] χ−1(s) in the TBCs (2.36) and (2.37) is approx-
imated by a rational function. This reduces the evaluation of the convolution to solving
ordinary differential equations (cf. (3.11)). Their semi-discrete ABC of order (l,m) has the
form

r(η;∆x)≈q(η;∆x)=
Pl(η;∆x)

Qm(η;∆x)
. (3.17)
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Typically, it yields a higher absorption quality than the spatial discretization (by finite
differences) of the continuous ABC in [4, Section 2].

If the dominant group velocity (or discrete wavenumber κ̄) of the solution is known,
then it is possible to choose the interpolatory nodes, such that a good absorption is
achieved. This will now be explained for the right semi-discrete ABC of order (2,1):

α0uJ−1(t)+α1
d

dt
uJ−1(t)=α2uJ(t)+α3

d

dt
uJ(t)+α4

d2

dt2
uJ(t), (3.18)

with coefficients αk depending on ∆x and the four interpolatory nodes ηk, k=1,··· ,4. The
strategy is to choose the nodes such that r(−ω−Vr;∆x)−q(−ω−Vr,∆x) is small when
ω =ω(κ̄), where ω(κ) is given by the dispersion relation

ω(κ)=
2
(
cosκ−1

)

∆x2
−Vr, (3.19)

for the plane wave solution

uj(t)=exp
(
i(κj+ω(κ)t)

)
, j∈Z. (3.20)

If one of the nodes is chosen as ηk = 2(1−cos(κ̄))/∆x2, then the plane wave (3.20) will
clearly be totally absorbed [5].

The fully discrete problem of Alonso-Mallo and Reguera [5] (using an A-stable im-
plicit Runge-Kutta method for the time integration) is still weakly unstable, with increas-
ing instabilities for higher order ABCs.

3.4 Approximations of the convolution kernel by sums of exponentials

The transparent boundary conditions from Sections 2 and 3.2 are convolutions in time,
either on a continuous level or on a time-discrete level. In order to obtain approximate
TBCs that are local in time the convolution kernel is approximated by a sum of exponen-
tials.

These approximations of the convolution kernel by sums of exponentials correspond
to rational approximations of the Laplace transform of the kernel (cf. Section 3.3).

The transparent boundary conditions in (2.10) and (2.37) are convolutions of the Neu-
mann data at the boundary with some kernel f

( f ∗∂nu)(t)=
∫ t

0
f (t−τ)∂nu(τ)dτ. (3.21)

For the continuous TBC the kernel function is

f (t)=L−1

(
1√·

)
(t)=

1√
πt

,
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while for the spatially discrete TBC the kernel function is

f (t)=L−1

(
1

χ̂−1−1

)
(t),

with χ given in (2.34). The TBCs in (2.8) and (2.36) are convolutions of the Dirichlet data
u(t) at the boundary with kernel functions

f (t)=
√

t and f (t)=L−1
(

χ̂−1−1
)
(t),

respectively. The time discretizations yield discrete convolutions

n

∑
k=1

wn−kuk

of the solution with convolution weights wk. The weights are γk (3.8), ℓ̃k (3.5), sk (2.47),
ψk (2.24), or ψ̂k (2.27). The numerical effort to evaluate the convolution at time step tn is
O(n). Thus a naive implementation to evaluate the discrete convolution for n = 1,··· ,N
is O(N2), which can become prohibitive. In [70] Hairer, Lubich, and Schlichte developed
a method to overcome this O(N2) operation count, and reduced it to O(N(log(N))2)
using FFT. However, the storage requirement is not reduced, it is still O(N).

3.4.1 Sum-of-exponential approximation of discrete convolution kernel

Using the discrete TBC (2.47) for calculations avoids any boundary reflections and it ren-
ders the fully discrete scheme unconditionally stable (just like the underlying Crank-
Nicolson scheme). An approach to approximate the discrete convolution (2.47) allowing
for a fast evaluation consists in approximating the kernel (2.48) by a finite sum (say m
terms) of exponentials that decay with respect to time (cf. [18]). With this approximated
kernel, the convolution can now be evaluated with a simple recurrence formula for m
auxiliary terms and the numerical effort now stays constant in time. On the Laplace-
transformed level this approximation amounts to replace the symbol ŝ(z) of the convolu-
tion (cf. (2.45)) by a rational approximation. This approach hence resembles the methods
of Section 3.3 — but on a time-discrete level. Such kind of trick has been proposed in [65]
for the heat equation and in [120] for the continuous TBC in case of the 3D wave equation,
and developed in [2, 38, 67, 121, 122] for various hyperbolic problems.

3.4.2 Local approximations — fast and oblivious convolution

In [93, 110] a fast and oblivious convolution algorithm is developed that allows to eval-
uate convolutions of the form (3.21). For equally spaced tn, n = 0,1,··· ,N, the algorithm
evaluates the convolution with O(N log(N)) operations requiring O(log(N)) memory. It
requires O(log(N)) evaluations of the Laplace transform of the kernel and no evaluation
of the kernel function f itself. The convolution integral from 0 to t is split as

∫ t

0
f (t−τ)u(τ)dτ =

L

∑
ℓ=1

∫ tℓ

tℓ−1

f (t−τ)u(τ)dτ,
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where the tℓ are such that [t−tℓ,t−tℓ−1] ⊂ [Bℓ−1∆t,2Bℓ∆t] for some B ≥ 2. For each ℓ

a contour Γℓ is chosen for the numerical inversion of the Laplace transform. Contour
integrals are discretized using the trapezoidal rule:

∫ tℓ

tℓ−1

f (t−τ)u(τ)dτ =
∫

Γℓ

F(λ)
∫ tℓ

tℓ−1

eλ(t−τ)u(τ)dτdλ

≈
K

∑
k=−K

F(λk)eλk(t−tℓ)
∫ tℓ

tℓ−1

eλk(tℓ−τ)u(τ)dτ.

(3.22)

The values t−τ in (3.22), for tℓ−1≤τ≤tℓ lie in the approximation interval [Bℓ−1∆t,2Bℓ∆t].
The length of this interval increases geometrically, whereas the ratio of its end-points
is bounded by 2B. In [90] it is explained how to choose Γℓ, such that the error in the
approximation (3.22) is O(exp(−cK)) independently of ℓ. The integral in (3.22)

∫ tℓ

tℓ−1

eλk(tℓ−τ)u(τ)dτ

is the solution y(tℓ) of the ordinary differential equation

y′(t)=λky(t)+u(t), y(tℓ−1)=0, (3.23)

which is solved numerically. Instead of keeping the past values of u(j∆t), j = 0,··· ,n at
the boundary, the solutions of (3.23) are kept. Only L=O(log(N)) different contours are
required, each with a fixed number of quadrature nodes λk, k=−K,··· ,K. This reduces the
active memory to O(L). Thus the kernel is approximated locally by sums of exponentials
eλkt including terms with Re(λk)>0, i.e., not decaying with respect to time. This approach
allows to maintain a uniform relative approximation error of the convolution kernel.

3.4.3 Approximation of Jiang and Greengard

In [78] Jiang and Greengard derived a fast evaluation algorithm for the TBC of the Schrö-
dinger equation which is a convolution in time with the singular kernel 1/

√
πt. This

approach was first developed by Greengard and Strain [65] for the heat kernel. Jiang and

Greengard first split the convolution integral (2.1) or (2.10) into the history part
∫ t−∆t

0 and

the local part
∫ t

t−∆t. The second term involves the singular part of the convolution and it
is approximated directly using linear interpolation and “product integration” techniques
[78, Lemma 9] suitable for square root singularities.

For the history part the kernel is approximated by a sum of exponentials, finally al-
lowing for a recursive evaluation of the convolution (similar to Section 3.4.1). The stan-
dard formula

L−1
( 1√·

)
(t)=

1√
πt

=
2

π

∫ ∞

0
e−s2t ds (3.24)
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yields a representation of the integral kernel with infinitely many exponentials. Truncat-
ing the lower limit of this integral (3.24) at t= p yields an error bound [78, Lemma 4]:

∣∣∣ 2

π

∫ ∞

p
e−s2t ds

∣∣∣= e−p2∆t

√
πt

, (3.25)

since t ≥ ∆t > 0 for the history term. For a fixed time step ∆t this error of the history
part can be made arbitrary small by choosing p sufficiently large. For the discretization
of the history part, the integral (3.24) on [0,p], a high-order Gauß-Legendre quadrature
on a dyadic splitting of the interval [0,2j], cf. [78, Lemmas 5 and 6] is used, yielding a
superposition of the exponentials.

As an advantage, this method is flexible; it can be coupled to an arbitrary interior
discretization for the Schrödinger equation. Moreover, this approach can be generalized
to higher-dimensional problems [77, 79].

3.5 The perfectly matched layer method

The perfectly matched layer method (PML) was invented by Bérenger [23] in 1994 as an
absorbing boundary conditions for Maxwell’s equations. Immediately it was realized by
Chew and Weedon in [32] that it can be interpreted as a complex coordinate stretching.
Collino [34] adapted the PML method to the paraxial wave equation. Later on, in [1, 88]
the PML method using the complex coordinate stretching technique was generalized to
more complicated settings. The Bérenger technique was applied by Zheng [133] to linear
and nonlinear Schrödinger equations. Let us note that a brief construction of the PML for
the Schrödinger equation can be found in [68, Section 3.3].

As the exterior domain is homogeneous, the Z-transformed solution û(x,z) of (2.19)
is analytic for x ≤ xl and x ≥ xr, and û(x,z) has an analytic extension to the half planes
Re x< xl , Re x> xr. We define

γ(x) :=





xl +(1+iσ)(x−xl) for x≤ xl ,

x for xl < x< xr,

xr +(1+iσ)(x−xr) for x≥ xr ,

and ûB(x) := û(γ(x),z), with the damping factor σ=1. Other choices of γ(x) are possible
and frequently used. Again ûB is decomposed as v̂B⊕ŵB according to the splitting into
an interior and exterior domain problem. Note that v̂B coincides with v̂ by definition. The
interface conditions are v̂B(xl,r,z)= ŵB(xl,r,z) and ∂nv̂B(xl,r,z)=−∂nŵB(xl,r,z)/γ′. Here,
γ′ =±(1+iσ) denotes the right-hand derivative of γ at xl (and vice-versa at xr). v̂B and



754 X. Antoine et al. / Commun. Comput. Phys., 4 (2008), pp. 729-796

ŵB are the solutions of the following coupled BVP

i
δ(z)

∆t
v̂B =−∂2

xv̂B +Vv̂B+ f , x∈ [xl ,xr],

∂nv̂B(xl,r)=−∂nŵB(xl,r)/γ′,
(3.26)

i
δ(z)

∆t
ŵB =− 1

(γ′)2
∂2

xŵB+Vl,rŵB, x∈Ωl∪Ωr,

ŵB(xl,r)= v̂B(xl,r),

lim
|x|→∞

ŵB =0,

(3.27)

where the inhomogeneity f = f [uI ,u1,··· ,uK−1] depends on the K initial values of the
multi-step method. The two fundamental solutions of (3.27) are

exp

(
iγ′ +

√
i
δ(z)

∆t
−Vl,rx

)
and exp

(
−iγ′ +

√
i
δ(z)

∆t
−Vl,rx

)
.

In case of the trapezoidal rule approximation the real part of δ(z)/∆t is positive. Thus the
square root term takes values in the first quadrant. Multiplying by γ′=−i(1+iσ), we find
that the second fundamental solution decays exponentially fast, while the first explodes
exponentially. What is required now is some condition to eliminate the first fundamental
solution. By imposing a homogeneous Dirichlet boundary condition at some distance
from the boundary, the portion of the first fundamental solution in our solution can be
made small. Thus we expect to obtain a reasonable approximation when replacing ŵB in
(3.26) by ŵPML obtained from

i
δ(z)

∆t
ŵPML =− 1

(γ′)2
∂2

xŵPML+Vl,rŵPML, x∈ Ω̃l∪Ω̃r,

ŵPML(xl,r)= v̂PML(xl,r),

ŵPML(xl,r±ρ)=0,

(3.28)

where Ω̃l =[xl−ρ,xl ] and Ω̃r =[xr,xr +ρ] are the left and right layers, with a sufficiently
large ρ > 0. With increasing thickness ρ of the layer the cut-off error gets exponentially
small. As pointed out by Hagstrom in [68, Section 3.3], Eq. (3.28) can be interpreted in
the following way: the system is simply made parabolic in the layer but increasing the
damping factor σ corresponds to decreasing the diffusion coefficient which might lead to
a boundary layer at the interface.

The PML method is temporally discrete. Reflections do not occur due to the complex
coordinate transformation, but only due to the cut-off error introduced by replacing (3.27)
by (3.28).

For completeness we include in the sequel a description of the PML algorithm.
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The PML algorithm

Following an idea presented for the Helmholtz equation in [111, 137] we take

γ(x)= xl,r+(1+i)(x−xl,r) for x≤ xl and x≥ xr.

Then we adapt ρ and the spatial discretization inside the PML layer according to the
pseudocode in Table 1. There, dx is the mesh width in the interior domain, eps is the
expected error resulting from the interior discretization, λmax and λmin are the maximal
and minimal wavelengths present in the problem. Note that the expected error eps can
be deduced from the mesh width and minimal wavelength. From the algorithm a vector
xi is obtained such that the mesh points in the right layer are given by xr +xi(n).

Table 1: Generating the PML.

let xi(1)=dx

n=1
dpml=dx

while −log(eps)/xi(n)>2∗π/λmax do

dpml=min(−2∗π∗xi(n)∗dx/log(eps)/λmin,1.6∗dpml)
xi(n+1)=xi(n)+max(dx,dpml)
if xi(n+1)>1/eps

return

else

n=n+1
end

end while

The motivation for this choice of the PML is as follows. Suppose we have a minimal
wavelength λmin in the interior. The corresponding wavenumber is κ = 2π/λmin and by
the complex continuation this wave is damped by the factor exp(−κξ), where ξ is the
distance from the boundary xl,r. Introducing the function

κco,ǫ(ξ)=−log(ǫ)/ξ,

then we have for κ>κco,ǫ and for ξ>ξ′ that waves are damped by a factor smaller than ǫ:

e−κξ
<e−κco,ǫ(ξ)ξ =eln(ǫ) =ǫ.

If this damping is sufficient, then for ξ >ξ′ only longer waves with wave lengths 2π/κ>

2π/κco,ǫ(ξ′) need to be approximated for distances ξ > ξ′. As this approximation should
be done with the same accuracy and as the accuracy is essentially determined by the
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number of points per wave length, λmin/∆x, we are led to the a priori determination of
the local mesh-width ∆x(ξ)=2π/κco,ǫ(ξ). Furthermore it is not sensible to take the local
mesh-width in the PML smaller than in the interior. Also the mesh in the exterior should
not become too anisotropic, therefore the local mesh-width dpml is bounded from below
by dx and from above by 1.6 times the old mesh-width.

3.6 Approximations based on the pole condition

For the pole condition of Section 2.2, the analyticity of a function W(q,s) for q in some
half plane has to be verified. Numerically this is realized by the following technique. E.g.
for q0 =−1+i the Möbius transformation

q 7→ q̃(q)=
q+q0

q−q0
(3.29)

maps the half plane below the bisecting line of the first and third quadrant to the unit
disk. Thus, in the transformed variable q̃, W has to be analytic on the unit disk. This
justifies the ansatz

W(q(q̃),s)=W̃(q̃)=
∞

∑
n=0

ân(s)q̃n. (3.30)

In the variable q̃ (2.15) reads

isW̃(q̃,s)+

(
q0

q̃+1

q̃−1

)2

W̃(q̃,s)−q0
q̃+1

q̃−1
ŵ(xr,s)−∂xŵ(xr,s)=VrW̃(q̃,s).

Multiplying by (q̃−1)2, plugging in the ansatz (3.30), sorting for powers of q̃, comparing
the coefficients and truncating the power series (3.30), yields the following equations for
the coefficients ân(s):

(is+q2
0−Vr)â0+q0ŵ(xr,s)−∂xŵ(xr,s)=0,

4q2
0 â0+(is+q2

0−Vr)â1+2q0ŵ(xr,s)=0,

4q2
0 â0+(−is+3q2

0+Vr)â1+(is+q2
0−Vr)â2 =0,

(is+q2
0−Vr)âk +(−2is+2q2

0 +2Vr)âk−1+(is+q2
0−Vr)âk−2 =0.

Transforming back to time-domain one obtains a system of ODEs for the an(t) that is
coupled to the Dirichlet and Neumann data of the interior problem. Details can be found
in [106,115]. Actually, the optimal choice of q0 would be i

√
is−Vr, since this decouples the

equations for the an(t) yielding the continuous TBC. In practice, to avoid the evaluation
of the pseudodifferential operator

√
i∂t−Vr, one rather uses q0 = (−1+i)

√
κ for some

dominant frequency κ.
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4 Extensions to two space dimensions

We have seen in the previous sections that many different approaches can be adopted for
approximating the transparent boundary condition (TBC) involved in the one-dimensional
case. The linear two-dimensional problem is much more complicated because the arti-
ficial boundary may have a quite general geometry. At this step and unlike the one-
dimensional case, a strategy must be chosen to build the TBC or an approximation of this
condition. In this situation, the exact TBC is a non-local pseudodifferential operator both
in space and time. Therefore, even from the numerical point of view, the choice of the
boundary condition plays an important role in the future approximation and algorithmic
developments.

The next challenge is the numerical approximation. Like the one-dimensional case,
accuracy and stability questions arise as well as the construction of fast algorithms to
evaluate the different operators which must be approximated.

The aim of this section is to review the current developments regarding the above
objectives.

4.1 Continuous transparent boundary conditions

A first approach to derive a continuous TBC set on a general artificial surface is outlined
in [109]. Let us consider the 2D Schrödinger equation without potential

i∂tu+∆u=0, (x,t)∈R2×R+,

u(x,0)=uI(x), x∈R2.
(4.1)

As a first step one introduces an artificial boundary Γ cutting R2 into two non-overlapping
parts: a bounded computational domain denoted by Ω (with boundary Γ) and its un-
bounded complement Ωext := R2\Ω. Moreover, we assume that the initial data uI is
compactly supported in Ω. Similarly to Section 2.1, we can split problem (4.1) as a trans-
mission problem between the two sub-domains Ω and Ωext using the field decomposition
L2(R2)= L2(Ω)⊕L2(Ωext):





i∂tv+∆v=0, (x,t)∈Ω×R+,
v(x,0)=uI(x), x∈Ω,
v(x,t)=w(x,t), (x,t)∈Γ×R+,

(4.1a)

and 



i∂tw+∆w=0, (x,t)∈Ωext×R+,

∂nw(x,t)=∂nv(x,t), (x,t)∈Γ,

lim
|x|→+∞

√
|x|
(
∇w · x

|x|+e−i π
4 ∂

1
2
t w

)
=0,

w(x,0)=0, x∈Ωext.

(4.2)
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Here, n is the outwardly directed unit normal vector to Γ. The Sommerfeld-like radiation
condition is added to assure the uniqueness of the solution to the exterior problem and is
classical for wave-like scattering problems.

As a second step we solve the exterior problem (4.2) in the time-Laplace domain by an
integral equation formulation. In the sequel v̂ and ŵ shall denote the Laplace transform
of the functions v and w, respectively. Then, (4.2) is reformulated as a Helmholtz-like
equation for the wave field ŵ:

(∆+k2)ŵ(x,s)=0, x∈Ωext,

∂nŵ(x,s)=∂n v̂(x,s), (x,s)∈Γ,

lim
|x|→+∞

√
|x|
(
∇ŵ(x,s)· x

|x| −ikŵ(x,s)

)
=0.

(4.3)

The wave number k is defined by k =
√

is, with Re(k) > 0. According to the theory of
potential for the 2D Helmholtz equation [36], the Helmholtz integral representation for-
mula of the exterior field is a superposition of the single- and double-layer potentials
applied, respectively, to the trace and to the normal derivative of ŵ on Γ. Making use of
the trace theorems for these two potentials and using the Neumann data of problem (4.3),
the integral representation of ŵ on Γ reads

(
1

2
I−M

)
ŵ(x,s)= L∂nŵ, x∈Γ.

Here, I is the identity operator, L is the single-layer potential defined by

Lϕ(x)=−
∫

Γ
G(x,y)ϕ(y)dΓ(y), x∈Γ,

and M is the double-layer potential given by

Mϕ(x)=
∫

Γ
∂nG(x,y)ϕ(y)dΓ(y), x∈Γ,

for a surface density ϕ. G(x,y)= i
4 H

(1)
0 (k|x−y|) is the free-space Green kernel associated

with the 2D Helmholtz operator. Transforming back to time-domain by using an inverse
Laplace transform and the Dirichlet data from (4.1a) yields the following Dirichlet-to-
Neumann map

∂nv=L−1

(
L−1

(1

2
I−M

)
v̂(x,·)

)
(t), x∈Γ, (4.4)

and the Neumann-to-Dirichlet map

v(x,t)=L−1

((1

2
I−M

)−1
L∂nv̂(x,·)

)
(t), x∈Γ. (4.5)
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Although (4.5) was already derived in [109], apparently it has not been used as a contin-
uous exact boundary condition. Indeed, in [109, Section3], the author rather uses a time
semi-discrete version of this condition in the special case of a circular boundary. This for-
mulation of the exact Dirichlet-to-Neumann map is a composition of an inverse Laplace
transform and spatial integral operators. As a consequence, numerically evaluating such
an operator in a stable way is very difficult and costly (also in terms of memory require-
ments).

4.2 Continuous transparent and artificial boundary conditions

The previous derivation shows that there exists a close relation between the derivation
of boundary conditions for the 2D Schrödinger equation and the Helmholtz equation
after the application of a Laplace transform in the time-domain. This point of view
has given rise to different adaptations of results available for the Helmholtz equation
to Schrödinger equations.

One of the most popular techniques for the derivation of artificial boundary con-
ditions for wave-like equations is based on the pioneering work of Engquist and Ma-
jda [57,58]. This approach leads to families of approximate (non-local and local) artificial
boundary conditions for variable coefficients scalar equations and systems. One of its
defects is that these conditions are not exact. On top of this loss of accuracy, stability of
the resulting IBVP has to be checked on a case-to-case basis. We shall now review the
results from this approach obtained for 2D Schrödinger equations. We present the fol-
lowing three cases with increasing numerical difficulties: a straight boundary, a circular
boundary, and finally a generally curved and smooth convex boundary.

4.2.1 Straight artificial boundary

Let Ω=R+×R be the right half-space. The artificial boundary is then Γ={x∈R2|x1=0}.
We consider the IBVP

{
(i∂t+∆)u=0, (x,t)∈Ω×R+,

u(x,0)=uI(x), ∀x∈Ω,
(4.6)

and the initial data uI is assumed to be compactly supported in Ω. For the construction of
the exact or transparent BC we require that the restriction of the R2-Schrödinger solution
to the right half-space coincides with the solution of (4.6) complemented with the exact
BC. We apply the Laplace transform in time (with dual variable s) and the Fourier trans-
form F in the x2-direction (with dual variable ξ). This yields the following differential
equation in the normal variable x1 for the solution w of the Schrödinger equation in the
left half-plane

(
∂2

x1
+is−ξ2

)
F ŵ(x1,ξ,s)=0, x1 <0, (4.7)
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where ŵ is the Laplace transform of w. The solution to this homogeneous (elliptic or
Helmholtz-type) differential equation (4.7) is given as the superposition of two waves

F ŵ(x1,ξ,s)= A+(ξ,s)eiλ+
1 (ξ,s)x1 +A−(ξ,s)eiλ−

1 (ξ,s)x1 ,

with λ±
1 (ξ,s)=∓

√
is−ξ2. If the point (x2,t,ξ,ρ) lies in the anisotropic M-cone

E :=
{
(x2,t,ξ,ρ)∈R4 ,ρ+ξ2

>0
}

,

with ρ = Im(s) and Re(s) > 0, then one can write the symbols λ±
1 such that Im(λ±

1 ) =

∓Ψ(ξ,s), where Ψ(ξ,s) = Re(s)/(
√

2(−(ρ+ξ2)+D)), setting D =
√

(ρ+ξ2)2+Re(s)2.
The function Ψ is strictly positive and smooth on E . As a consequence, in order for
F ŵ(.,ξ,s)∈L2(R−) to hold, we require A−=0, and hence

F ŵ(x1,ξ,s)= A+(ξ,s)eiλ+
1 (ξ,s)x1 . (4.8)

The part of the wave ŵ at point (x2,t,ξ,ρ) in E is exponentially decaying (as x1→−∞) and
usually called evanescent. This zone is called the M-quasi elliptic region setting M=(1,2) [8]
using the notations introduced by Lascar [84]. The pair M is introduced to recall the
different homogeneities of the dual variables s and ξ in the symbols λ±

1 [8,84]. The points
(x2,t,ξ,ρ) in the cone

H=
{
(x2,t,ξ,ρ),ρ+ξ2

<0
}

represent the propagative part of the wave. This zone is referred to as the M-quasi hyper-
bolic part. Finally, the complementary zone

G=
{
(x2,t,ξ,ρ),ρ+ξ2 =0

}

corresponds to the rays propagating along the boundary (grazing waves). This region is
called the M-quasi glancing zone. It is reduced to {(0,0,0,0)} if the wave u is not tangen-
tially incident to Γ.

The exact boundary condition is easily deduced by applying the normal derivative
operator ∂x1

to (4.8) and choosing x1 =0, n=(−1,0) as the outwardly unit normal vector
to the computational domain. The inverse Laplace-Fourier transform then yields

∂nu+iΛ̃+(∂x2 ,∂t)u=0, on Γ×R+, (4.9)

with

Λ̃+(∂x2 ,∂t)w(0,x2,t)=
1

(2π)2i

∫ γ+i∞

γ−i∞

∫

R
λ+

1 (ξ,s)F ŵ(0,ξ,s)eiξx2+stdξds,

cf. [8]. Formally, this TBC operator may be written as

Λ̃+(∂x2 ,∂t)=−
√

i∂t+∆Γ = e−3iπ/4
√

∂t+(e−iπ/4∂x2)
2,
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where ∆Γ denotes the surface Laplace-Beltrami operator ∂2
x2

. The TBC operator is defined as
the square root of a surface Schrödinger operator on Γ×R+ which is therefore non-local
both in space and time.

¿From a numerical point of view, its implementation is computationally expensive
and not obvious.

A way to obtain approximations of the TBC (4.9) is to consider that we are mostly
interested in characterizing the high temporal frequencies of the wave field (since those
wave components travel the fastest). This means that we assume that the only frequen-
cies of interest are contained in H and satisfy the high frequency assumption: |s| is large
compared to ξ2. The important point of this hypothesis is that local approximations of
the symbol λ+

1 w.r.t. the small parameter ξ2/|s| can be derived. In [15], Arnold proposed
a first and second-order Taylor expansion of the symbol λ+

1 . The author obtains the fol-
lowing two artificial boundary conditions

(∂n+e−iπ/4∂
1
2
t )u=0, on Γ×R+, (4.10)

and

(∂n+e−iπ/4∂
1
2
t −eiπ/4 1

2
∆Γ I

1
2
t )u=0, on Γ×R+. (4.11)

We remark that the exact solution u is hence approximated by another solution that we

keep on denoting by u, for simplicity. Like in the one-dimensional case, ∂1/2
t and I1/2

t

respectively denote the fractional derivative and integral operators of half-order

∂
1
2
t ψ(t)=

1√
π

d

dt

∫ t

0

ψ(s)√
t−s

ds, I
1
2
t ψ(t)=

1√
π

∫ t

0

ψ(s)√
t−s

ds. (4.12)

Although they are still non-local in time, these two approximate boundary conditions
(also called artificial boundary conditions) are local in space. This is an important fea-
ture in numerical simulations since the sparse structure of the linear system arising from
a finite-difference or finite-element approximation is preserved [12]. Indeed, the non-
locality in time only appears in the inhomogeneity of the linear system, and any fast
scheme developed for the one-dimensional case can be used to evaluate the fractional
operators. The situation is more delicate when the boundary operator is non-local both
in space and time. In this case the sparse matrix of the linear system typically gets addi-
tional entries due to the TBC.

Using (like in Section 3.3.1) a rational approximation of the square root,

√
z≈ a0+

m

∑
j=1

ajz

z+bj
, (4.13)

with z=is−ξ2 and complex valued coefficients aj and bj yields again fully local boundary

conditions — as an approximation of Λ̃+. The crucial point here is that this approxima-
tion can be reformulated in the space and time domain as a coupled system of differential
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equations using Lindmann’s trick [89]. Indeed, we can compute the normal derivative
trace of u by

∂nu= a0u+
m

∑
j=1

aj(i∂t+∆Γ)ϕj,

with the auxiliary functions ϕj satisfying the surface Schrödinger equations

(i∂t+∆Γ +bj)ϕj =u, on R×R+.

Since only partial differential operators are involved, this formulation is purely local. Di
Menza [40–42] was the first to investigate this approach for the Schrödinger equation.
In [125,126], Szeftel develops a deep analysis about the way of deriving suitable approxi-
mations using an optimization technique of the reflection coefficient in suitable, weighted
spaces in the hyperbolic region. Problems related to well-posedness of the truncated ini-
tial boundary value problems are also stated in [125, 126]. Let us mention that much
more developments have been done in the case of wave equations (see, e.g., the review
papers by Hagstrom [67, 68] and also [14, 80, 97], where rational approximants valid in
both the hyperbolic and elliptic zones are available). It could be useful to apply these
recent developments also to Schrödinger-type equations.

In all of the situations discussed above, the authors consider the TBC just for the half
space. In many practical simulations, however, such TBCs are imposed on a rectangular
artificial boundary. Since this generates some reflections at the corners, suitable addi-
tional corner conditions should be added to avoid these reflections (cf. Collino [35] for
corner conditions for wave-like equations). For the Schrödinger equation, however, no
results exist on this topic so far.

4.2.2 The waveguide geometry

The 2D Schrödinger equation on the infinite strip R×(0,Y) with homogeneous Dirichlet
BCs at y = 0 and y = Y has important applications for modeling the leads in quantum
waveguides. The exact TBC at an artificial boundary (perpendicular to the channel) was
derived in [22] under the assumption that the exterior potential V only depends on the
transversal coordinate. Decomposing the wave function u into the (transversal) eigen-
functions of

[−∂2
y+V(y)]χm(y)=Emχm(y)

yields — for each mode um — the 1D TBC (2.1) pertaining to the potential Em. Hence all
the methods described for the 1D Schrödinger equation can be employed. Expanding the
boundary data into eigenfunctions however makes the method non-local in space.

The PML method and the method based on the pole condition do not require a de-
composition of the boundary data into eigenmodes of the Laplace-Beltrami operator. For
the PML method a complex continuation in R can be used. For the pole condition a La-
palace transform in R can be used as long as the Laplace-Beltrami operator [−∂2

y+V(y)]
is positive [106].
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4.2.3 Circular artificial boundary

Since the problem of reflections at the corners is still unsolved for the Schrödinger equa-
tion, alternative strategies have been pursued. An obvious choice is to use circular arti-
ficial boundaries. As in the preceding subsection, the derivation of the TBC is based on
the Laplace transform in time and Fourier series in space.

We assume that the computational domain is the disk

Ω= D(0,R)⊂R2,

centered at the origin with radius R. The transient Schrödinger equation then reads in
polar coordinates (r,θ):

iut+
1

r
(rur)r +

1

r2
uθθ−V(r,θ,t)u=0, (r,θ,t)∈Ω×R+ , (4.14a)

u(r,θ,0)=uI(r,θ), ∀(r,θ)∈Ω, (4.14b)

u(r,0,t)=u(r,2π,t), r>0, t>0, (4.14c)

lim
r→∞

u(r,θ,t)=0, 0< θ <2π, t>0. (4.14d)

If V is constant outside the computational domain Ω, the solution to the associated
exterior Helmholtz-type system (in the Laplace domain) can be obtained by a series ex-
pansion in Hankel functions of the first kind. This yields the exact boundary condition
as the Dirichlet-to-Neumann map

∂nu(R,θ,t)

=
1

2π ∑
m∈Z

L−1

(
√

i·−V
H

(1)′
m (

√
i·−VR)

H
(1)
m (

√
i·−VR)

∫ 2π

0
û(R,φ,·)e−imφdφ

)
(t)eimθ (4.15)

on ∂Ω (cf. [10] for details, or [13] for an alternative derivation based on diagonalizing the
integral operators in (4.4) on the discrete Fourier basis). As in the half space case, this
boundary condition (4.15) is non-local in time and space. While this exact TBC has not
been used intensively for Schrödinger-type equations, the development of fast and stable
numerical schemes for (4.15) would be highly desirable.

In [72], the authors give a reformulation of this TBC which appears more practical
for numerical implementations: There, the s-integral of the inverse Laplace transform in
(4.15) is replaced by a convolution in time, with a convolution kernel again involving
Bessel functions. Moreover, truncating the infinite sum over the Fourier modes yields
satisfactory numerical results. Note that the extension to three dimensional space is given
in [74].

4.2.4 General convex artificial boundary

As previously seen, transparent and artificial boundary conditions can be constructed
easily for some simple geometries like the half space (vanishing curvature) or the disk
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(constant curvature). Compared to the one-dimensional case, the additional ingredient
was the Fourier transform in space. In the case of a general smooth boundary Γ, the
derivation of the TBC is based on the local construction of the non-reflecting operator
in a generalized coordinates system. This extension of the work of Engquist and Ma-
jda [57,58] was developed in [8,12]. Roughly speaking, the curved domain is mapped into
the half-space. This implies that the resulting modified Schrödinger equation has variable
coefficients making the classical Fourier analysis inapplicable. Indeed, the Fourier trans-
form of this operator involves some convolutions difficult to manipulate from a com-
putational viewpoint. Using pseudodifferential operators and the symbolic M-calculus
(see [84] and Section 4.2.1) an asymptotic expansion of the total symbol of the non-
reflecting operator outside the M-quasi glancing zone was computed in [8]. With an
additional high-frequency expansion (w.r.t. the small parameter |ξ|2/|s|) in the hyper-
bolic zone, the authors obtain the following local in space and non-local in time artificial
boundary conditions:

Proposition 4.1. The Schrödinger equation with an artificial boundary condition of order
ℓ

2 , with ℓ∈{1,··· ,4}, is defined by the initial boundary value problem





(i∂t+∆)u=0, (x,t)∈Ω×R+,

∂nu+Tℓ

2
u=0, (x,t)∈Γ×R+,

u(x,0)=uI(x), x∈Ω.

(4.16)

The operators Tℓ

2
,ℓ∈{1,··· ,4} are pseudodifferential in time and differential in space, and

they are given by

T1
2
u= e−iπ/4∂

1
2
t u, T1u=T1

2
u+

κ

2
u, on Γ×R+,

T3
2
u=T1u−eiπ/4

(
κ2

8
+

1

2
∆Γ

)
I

1
2
t u, on Γ×R+,

T2u=T3
2
u+i

(
κ3

8
+

1

2
∂ζ(κ∂ζ)+

∆Γκ

8

)
Itu, on Γ×R+.

(4.17)

Here, the half-order fractional derivative and integral operators are given by the relations
(4.12), and the Laplace-Beltrami operator is defined by ∆Γ=∂2

ζ . κ=κ(ζ)≥0 is the curvature
of Γ and ζ its arc length parameter.

The numerical implementation of these conditions can be realized directly using for
example a Crank-Nicolson scheme and the associated discretizations (2.24), (2.25), and
(2.27) of the fractional derivatives and integral operators. Faster schemes like the ones
proposed in the one-dimensional case could also be used, but this has not yet been ad-
dressed in the literature. Finally, the spatial discretization can be realized by finite ele-
ments (cf. [12] for details).
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Besides of the construction of artificial BCs for variable coefficients Schrödinger equa-
tions, this pseudodifferential operator calculus approach also applies to the one-dimen-
sional Schrödinger equation with a space and time dependent potential (cf. (2.14) and
[11]).

In [125,126], Szeftel proposed some extensions of this approach to higher dimensions
following the techniques introduced by Halpern and Rauch for the heat equation [71].
Moreover, rational approximations of the square root like in (4.13) are analyzed, leading
to fully local artificial boundary conditions.

4.3 Fully discrete transparent boundary condition

4.3.1 The waveguide geometry

For the setting described in Section 4.2.2 the authors in [18] consider the analogous situa-
tion for a regular Crank-Nicolson, 5-point finite difference scheme in the exterior domain.
For a constant exterior potential Vl,r, the wavefunction is now decomposed into the dis-
crete Fourier modes χm

k = sin(πkm/K); k,m =1,··· ,K−1 with K∆y=Y. These modes um

are again decoupled in the exterior domain, and each of them satisfies the 1D discrete
transparent boundary condition (DTBC) (2.47) pertaining to the potential

Vm =Vl,r+
1−cos(πm/K)

∆y2
; m=1,··· ,K−1.

An extension of such 2D DTBCs for a 9-point finite difference scheme (Numerov
scheme) and quantum waveguide simulations are the topic of [117].

4.3.2 Circular geometry

In [19], the authors derive DTBCs for the fully discrete time-dependent Schrödinger equa-
tion, with a circle of radius R as computational domain (cf. Section 4.2.3). They consider
a Crank-Nicolson finite difference scheme for the Schrödinger equation in polar coordi-
nates (4.14), with the radial offset grid points rj =(j+ 1

2)∆r, the uniform angular grid points
θk = k∆θ (K∆θ = 2π), and tn = n∆t. Note that an offset grid is chosen to circumvent the
singularity problem at the origin.

In order to reduce the problem to the simpler 1D case, a discrete Fourier transform in
θ-direction yields the following scheme in the exterior domain j≥ J−1:

− i

∆t
(um,n+1

j −um,n
j )

=
1

rj

1

∆rj

[ rj+1/2(u
m,n+ 1

2
j+1 −u

m,n+ 1
2

j )

∆rj+1/2
−

rj−1/2(u
m,n+ 1

2
j −u

m,n+ 1
2

j−1 )

∆rj−1/2

]
−Vm

j u
m,n+ 1

2
j ,

Vm
j :=VR+

1−cos(2πm/K)

r2
j ∆θ2

, 0≤m≤K−1, n≥0.
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As in Section 4.3.1 the modes um,m=0,··· ,K−1 are independent of each other in the
exterior domain r≥R since the potential V is constant there. Therefore, we continue the
presentation for a separate mode (omitting the superscript m in the notation). For each
fixed j we use the Z-transform of the sequence {un

j }, n∈N0 and obtain the transformed

exterior scheme:

−iρj δ(z)ûj(z)=
1

rj

[
rj+1/2

(
ûj+1(z)−ûj(z)

)
−rj−1/2

∆rj+1/2

∆rj−1/2

(
ûj(z)−ûj−1(z)

)]

−∆rj∆rj+1/2Vjûj(z), j≥ J−1, (4.18)

with the mesh ratio ρj =∆rj∆rj+1/2/∆t and δ(z)=2(z−1)/(z+1) denotes the generating
function of the Crank-Nicolson method (cf. Example 2.1). This is a homogeneous second
order difference equation

ajûj+1(z)+bj(z)ûj(z)+cjûj−1(z)=0, j≥ J−1, (4.19)

with the non-constant coefficients

aj =
rj+1/2

rj
, (4.20a)

bj(z)=− 1

rj

[
rj+1/2+rj−1/2

∆rj+1/2

∆rj−1/2

]
+iρj δ(z)−∆rj∆rj+1/2Vj, (4.20b)

cj =
rj−1/2

rj

∆rj+1/2

∆rj−1/2
. (4.20c)

For a regular radial grid and in the j → ∞—limit this reduces to the 1D case of (2.42).
Hence, the 1D DTBC (2.47) represents the limiting BC for large circles.

Just like in (2.43), the quotient

ω̂j(z)=
ûj(z)

ûj−1(z)

characterizes the Z-transformed DTBC at j= J, if the decaying solution (as j→∞) of (4.19)
is chosen. In contrast to the 1D case, ω̂j(z) is not known explicitly, but can be computed
recursively from (4.19). For stability reasons

ω̂∞(z) := lim
j→∞

ω̂j(z)

(known from (2.44)) serves as starting value at some sufficiently large index J∞.

5 Nonlinear Schrödinger equations

Nonlinear Schrödinger equations [31, 123], both with local and nonlocal non-linearities
are very important in many applications: optics, electromagnetism, plasma physics, etc.
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Concerning the extension of TBCs, most work has been done on local non-linearities of
the form

i∂tu+∂2
xu+V(u)u=0, x∈R, t>0. (5.1)

In this section we shall confine ourselves to the cubic nonlinear Schrödinger equation
with V(u)=q|u|2, q∈R which is the best studied example.

Different semi-discrete schemes can be used but the Crank-Nicolson [39]

i
un+1−un

∆t
+∂2

x

un+1+un

2
+

V(un+1)+V(un)

2

un+1+un

2
=0, (5.2)

and the Durán-Sanz-Serna [46]

i
un+1−un

∆t
+∂2

x

un+1+un

2
+V

(
un+1+un

2

)
un+1+un

2
=0 (5.3)

schemes are very popular.

5.1 Exact continuous TBC

In the recent paper [26], Boutet de Monvel et al. constructed the nonlinear Dirichlet-to-
Neumann map associated with the one-dimensional, cubic nonlinear Schrödinger equa-
tion (NLS). Their approach is based on the inverse scattering theory which, of course, re-
stricts this procedure to fully integrable systems (i.e., a cubic nonlinearity in the Schrödin-
ger equation).

In [132], Zheng reformulates this TBC to make it more suitable for numerical approx-
imations. This nonlinear TBC is defined through a set of nonlinear integro-differential
equations. With g0(t) :=u(xr,t) and g1(t) :=∂nu(xr,t) it reads

g1(t)= g0(t)M2(t,t)−e−iπ/4∂1/2
τ M1(t,2τ−t)|τ=t. (5.4)

The auxiliary functions L1,2(t,s), M1,2(t,s) satisfy the following hyperbolic system (linear
for given g0, g1) on the cone t≥0, |s|≤ t:

L1,t−L1,s = ig1(t)L2+α(t)M1+β(t)M2,

L2,t+L2,s =
iq

2
ḡ1(t)L1−α(t)M2−

q

2
β̄(t)M1,

M1,t−M1,s =2g0(t)L2+ig1(t)M2,

M2,t+M2,s =−qḡ0(t)L1+
iq

2
ḡ1(t)M1,

α(t) :=
q

4
(ḡ0g1− ḡ1g0), β(t) :=

i

2

(
ġ0−

iq

2
|g0|2g0

)
,

(5.5)

with the boundary conditions at s=±t:

L1(t,t)=
i

2
g1(t), M1(t,t)= g0(t),

L2(t,−t)= M2(t,−t)=0.
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In [132], Zheng compares three schemes for the interior discretization of the NLS:
the schemes (5.2) and (5.3), and the relaxation scheme of Besse in [24]. For the TBC a
predictor-corrector scheme is employed. Moreover, the fractional derivative operator
is discretized by the Baskakov-Popov scheme given in (3.7) and by scheme (2.24)-(2.25)
— the latter being faster and more accurate. Finally, the resulting discretized nonlinear
system is solved by a successive approximation method.

The numerical simulations (using a spatial finite element discretization) of propa-
gating solitons show that this nonlinear and nonlocal TBC avoids any reflections at the
boundary. However, there is no stability analysis of this scheme available yet.

5.2 Approximate continuous TBCs – the pseudodifferential operator approach

Concerning approximate continuous nonlinear TBCs we shall first discuss approaches
based on the pseudodifferential operator calculus and then (in Section 5.3) a paradif-
ferential operator approach. While the justification of the pseudodifferential approach
requires C∞-smoothness of u, the paradifferential approach also works for solutions with
finite smoothness.

While the exact nonlinear TBC can be constructed for the cubic nonlinear Schrödinger
equation, other nonlinearities require approximations in the TBC. Since the pseudodif-
ferential operator calculus is a priori only developed for linear, variable coefficients equa-
tions, it will be applied to some linearized problems: Interpreting V(u) in (5.1) as a po-
tential, i.e., a varying coefficient for u (and ignoring for the moment its dependence on u)
indeed yields good results for the nonlinear case.

In [11], the authors use a gauge change to handle the nonlinearity V(u)u. While
[11] actually only deals with the cubic NLS, the very same approach applies to general
nonlinearities, and this is a big advantage over the strategy from Section 5.1. The starting
point is Remark 2.5 on time-dependent potentials V: For the linear equation the exact
TBC can be obtained by a simple gauge change. Using this remark, the same strategy is
considered for a time-spatial varying potential V. Then, using approximate factorization
techniques and a fractional pseudodifferential operator calculus, a hierarchy of increasing
order artificial boundary conditions is derived. Then, the potential is formally replaced
by the nonlinearity V(u)u. For example, the second order nonlinear artificial boundary
condition reads

∂nu+e−iπ/4eiU∂1/2
t (e−iUu)+

i

4
∂n(V(u))eiU It(e−iUu)=0, at Γ, (5.6)

where It denotes the integration operator and U is given by

U(x,t)=
∫ t

0
V(u(x,s))ds. (5.7)

At the semi-discrete level, the two time discretization schemes (5.2) and (5.3) are con-
sidered. The fractional operators are discretized following (2.24)-(2.25). Stability results
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are stated at the semi-discrete level for the simplest first-order condition but the problem
remains open for the above second-order condition. Finally, a fixed point algorithm is
applied to handle the nonlinearity. The spatial discretization is based on a finite element
method.

Numerical simulations (soliton propagation and interaction of two solitons) show the
efficiency of the approach, i.e., small numerical reflections. However, compared to the
method of Zheng, these conditions only work well for sufficiently fast solitons. The main
reason is that the underlying asymptotic expansion used to derive these conditions is
valid at high frequencies.

A similar approach has been recently derived by Szeftel in [125,127,128] for a general
nonlinear one-dimensional Schrödinger equation. He applies a pseudodifferential fac-
torization directly to the linearized equation with the potential term Vu (i.e., without the
gauge change in (5.6), (5.7)). This yields a hierarchy of artificial boundary conditions, and
finally the nonlinearity V(u) is plugged into the results. In the cubic case, for example,
the second order BC reads

∂nu+e−iπ/4∂1/2
t u−qeiπ/4 |u|2

2
I1/2
t u+q

i

4
∂n(|u|2)Itu=0, at Γ. (5.8)

At the semi-discrete level, the interior scheme is based on the Durán-Sanz-Serna scheme
and a fixed point algorithm. The fractional operators are discretized again using (2.24)-
(2.25). The numerical results are satisfactory, but the approach in [11] yields a better
accuracy for the cubic NLS.

5.3 Approximate continuous TBCs – the paradifferential operator approach

A disadvantage of the pseudodifferential operator approach is the fact that the lineariza-
tion of (5.1) bears a certain arbitrariness. This can be removed using the paralinearization
of Bony [25]. His paradifferential calculus has been applied formally the first time in the
context of artificial boundary conditions to the nonlinear viscous Burgers equation by
Dubach [44]. He showed that, in some situations, an improved accuracy can be expected
compared to a purely pseudodifferential approach. Szeftel recently introduced in a series
of papers [125, 127, 128] a rigorous application of the paradifferential calculus to several
nonlinear wave and Schrödinger equations. In almost all numerical examples of [128] the
first order local, nonlinear ABC obtained with the paradifferential strategy yields better
results than the ABC based on the pseudodifferential approach. However, the paradif-
ferential strategy does not apply to the cubic NLS, since that nonlinearity involves both u
and ū. Reference [127] extends the numerical comparison of the above two strategies to
first and second order nonlocal, nonlinear ABC for the 1D Schrödinger equation with the
nonlinearity −u∂xu. Again, the paradifferential ABCs yield better results — at second
order, however, only for short time.

Even if the paradifferential method is very technical, it seems to provide a valuable fu-
ture direction for simulating nonlinear equations including Schrödinger-type equations.
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Finally, let us remark that there exists a recent completely different approach, the Time
Dependent Phase Filter by Soffer and Stucchio [119]. In this method the NLS is solved on
a sufficiently large domain (assuming that the nonlinearity is localized in this region)
supplied with periodic boundary conditions that allow for a fast solution of the interior
problem by spectral methods based on FFT.

6 Numerical examples

In this final section we shall use some benchmark problems for the linear Schrödinger
equation in 1D to compare the numerical results from using the different approaches
presented in the preceding Sections 2 and 3.

The wide diversity of the methods presented in this review paper leads us to se-
lect only some of them, trying to be as much thorough as possible by using the his-
torical approaches (Baskakov-Popov, Shibata, Kuska,···) to the more recent ones (pole
conditions,···). Let us denote by CNFE and CNFD the Crank-Nicolson finite elements
methods and Crank-Nicolson finite differences methods, respectively. Each method is
grouped into different families. The Fevens-Jiang family includes methods which use (3.14)
as the origin of approximation. Next, the square root approximation family defines the meth-
ods which use (3.11). In the same spirit, the Finite Differences family and the Finite Elements
family brought together methods which use finite differences or finite elements schemes
in the computational domain. This separation into four basic groups allows on the one
hand to identify in each family the advantages and the drawbacks of the methods, and on
the other hand to understand if a family is more or less competitive compared to another
one. The proposed designation is shown in Table 2. The optimized coefficients for the
Szeftel method are given by

a3
0 =0.7269284, a3

1 =2.142767, a3
2 =5.742223, a3

3 =46.58032,

d3
1 =6.906263, d3

2 =65.82243, d3
3 =1124.376.

For PML methods using finite elements the layer discretization and the layer thickness is
chosen by the pseudocode given in Table 1 on Page 755. The parameters are eps=10−7,
λmin=0.05 and λmax=20. For ∆x=0.01, i.e., J=1500 grid points in the interior, this results
in a layer with 94 grid points and a thickness of about 52.7.

Before discussing the numerical simulations, let us summarize the different types of
errors expected for each method. Since a semi-discrete Crank-Nicolson scheme based on
the trapezoidal rule is used, the error in time is O(∆t2). The space discretization is done
using the second order finite difference scheme (2.29) (p=1) or using a finite element ap-
proximation with polynomials of order p=1,2. Let us remark that during the assembling
process for p=2, a simple elimination procedure could be performed on the elementary
local matrices to only work with the extreme nodes of the finite elements. Therefore, the
size of the linear system to solve would be the same for the linear and quadratic finite
elements. The spatial L2-error is O(∆xp+1). The global error resulting from the interior
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Table 2: Implemented numerical methods.

Name Methods

Fevens–Jiang family

Shibata [118] CNFD using (3.14) with m=2

Kuska [82] CNFD using (3.14) with m=3

Fevens [59] CNFD using (3.14) with m=4
Approximation of the square root

Di Menza [27] CNFD using (3.11) with 27 coefficients

Padé [127] CNFD using (3.12) with 20 coefficients
Szeftel [127] CNFD using (3.11) with 4 optimized coefficients

Finite differences family

Arnold–Ehrhardt [16] CNFD using (2.47)–(2.48)
FD [9, 112, 113] CNFD using (2.24) with convolution weights (2.25)

Baskakov–Popov [21] CNFD using (3.7)
PML FD CNFD using (3.28)

Pole FD [106] CNFD using (2.16) with 20 coefficients

Finite elements family

FEM 1, FEM 2 [9] CNFE using (2.24) with convolutions weights (2.25)
and finite elements of polynomial degree 1 and 2

PML FEM 1, PML FEM 2 CNFE using (3.28)

Pole FEM 1, Pole FEM 2 [106] CNFE using (2.16) with 20 coefficients

discretization sums up to the order O(∆t2)+O(∆xp+1). The discretization error stem-
ming from approximating the boundary condition (2.1) or (2.10) is considered separately
for each method below. From a general point of view, this error can be written through a
term CBC which is equal to zero if a transparent Boundary Condition is considered and is
strictly positive for an approximate boundary condition. Of course, CBC depends on the
considered boundary condition and from its tuning parameters like e.g. the order of the
paraxial approximation or the size of the PML layer. Then, the global error of a scheme
for a boundary condition is:

E(p,CBC)=O(∆t2)+O(∆xp+1)+CBC.

Being given a Boundary Condition, the value of CBC can be observed in the next nu-
merical tests by considering the limit of E as ∆x and ∆t tend both toward zero. More
systematically, let us consider each boundary condition separately:

• For the Fevens-Jiang and approximation of the square-root families, second-order
schemes in space and time are used. Moreover, we have an approximation error
CBC independent of the step sizes ∆t and ∆x. It is related to the way the approxi-
mation of the exact fractional derivative operator is made according to parameters
values given in Table 2. This results in a general error E(1,CBC).

• The fully discrete scheme of Arnold and Ehrhardt [16] described in Section 2.5
yields an error E(1,0) since it is an exact discrete condition.



772 X. Antoine et al. / Commun. Comput. Phys., 4 (2008), pp. 729-796

• The FEM p method using (2.24) with finite elements for the space discretization
does not produce any additional error term. The total error is then E(p,0) since it is
an exact boundary condition.

• The FD approach using finite differences with (2.24) for the space discretization
have additional error terms. The normal derivative is approximated by (3.3) and
the discrete interior solution is coupled to the continuous solution in the exterior
domain. This will give rise to an additional error term of order O(∆x2) [9, 112, 131]
which leads globally to an error E(1,0).

• In [124], Sun and Wu prove that the error of the Baskakov-Popov time discretization
scheme [21] is O(∆x3/2+∆t3/2∆x−1/2) for the discretization (3.1). The second-order
convergence is lost for stability reasons. In the present paper and in [21], the dis-
cretization (3.2) is used. It appears that the numerical error is: ErrT f =O(∆t3/2)
and ErrL2 =O(∆t3/2) for ∆t→ 0 and ErrT f =O(∆x2), ErrL2 =O(∆x2) for ∆x→ 0
(see (6.3) for the errors definitions). Since it is an approximation of the transparent
operator, we furthermore have CBC =0.

• The PML methods (3.28) using either finite differences (PML FD) or finite elements
(PML FEM) show an error O(exp(−cρ)) for some c > 0, independent of ∆t and
∆x setting the PML at a distance ρ. The total error is E(1,CBC), with CBC = CBC(ρ)
which can be made small by increasing ρ.

• The Pole condition methods (2.16) using either finite differences (Pole FD) or finite
elements (Pole FEM) [106] again show a truncation error independent of ∆t and
∆x introduced by truncating the power series (3.30). We use 20 coefficients in the
experiments. Additionally the (Pole FD) methods suffer from an O(∆x2) error term
introduced by (3.3). The total error is E(1,CBC), where CBC can be made small by
increasing the number of coefficients in the power series expansion.

6.1 Numerical Example 1: Free Schrödinger equation

As a first benchmark problem we consider the Schrödinger equation (1.1) with a vanish-
ing potential V≡0 and a Gaussian initial condition

uI(x)=
4

√
2

π
exp

(
−(x−xc)

2+ik0(x−xc)
)
, x∈R. (6.1)

For this simple example the continuous solution uex can be calculated explicitly:

uex(x,t)=
4

√
2

π

√
i

−4t+i
exp

(−i(x−xc)2−k0(x−xc)+k2
0t

−4t+i

)
, (6.2)

x∈R, t>0. The computational domain is Ωint=]−12,3[, the Gaussian is centered around
xc =−6, the wave number is chosen to be k0 = 5, and the final time of the simulation is
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Figure 5: Example 1: Arnold-Ehrhardt.

fixed to Tf = 4. The initial Gaussian is cut-off close to the artificial boundary xl =−12,

xr =3. Since |uI(xl,r)|≈10−11 this has virtually no influence on the results.
Note that the high frequency of the solution needs a very good approximation of the

fractional operator ∂1/2
t which allows to distinguish qualities and defaults of the different

tested numerical methods described in Table 2.

6.1.1 Contour plots of the solutions

In this section we use J=1500 grid points (i.e., ∆x=10−2) for the spatial discretization and
a time step ∆t=10−3. To bring to the fore the unphysical numerical reflections linked to
the different methods, we plot the contour of log10(|u|). Indeed, the numerical reflections
are too small to be visualized in a traditional contour plot. Using a log-contour plot, as
some kind of ‘zooming tool’ allows to show small level of reflections. We use a common
colormap for all contour plots figures (see Fig. 4).

The following figures show some unphysical reflections that are very small in mag-
nitude compared to the discretization error (cf. Section 6.1.3) for the chosen parameters.
Despite this fact, they yield some suitable guidance of what might be considered as a
good artificial boundary condition. In Fig. 5 the contour plot of the solution for the fully
discrete scheme of Arnold and Ehrhardt is presented. By construction there are no re-
flections at all from the discrete TBC, thus it serves as a reference solution for the other
methods.

In the sequel we present the contour plots according to the group structure shown in
Table 2. At the sight of the contour plots of the Fevens-Jiang family in Fig. 6, it is obvious
that increasing the level m in (3.14) improves significantly the quality of the solution.
Nevertheless, these methods, older than the other ones developed in this article, are less
competitive.

The solutions built with a square root approximation shown in Fig. 7 are far better and
also show a grading in the quality of the results. Note that the Bruneau-Di Menza method
needs 27 coefficients to reach this level of reflection and for the Padé method (3.12) 20
coefficients are sufficient to obtain a good approximate solution. Let us also point out
that the construction of the coefficients by minimization of the reflection coefficient (3.13)
allows to highly reduce the numerical artefacts. Indeed, the Szeftel method only uses 3
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Figure 6: Example 1: Fevens-Jiang family.
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Figure 7: Example 1: Approximation of the square root.

coefficients following this rule. We remark that the accuracy within this group strongly
depends on the chosen discretization parameters, e.g., there also exists parameters where
the Szeftel approach with only 3 coefficients performs best (within this group).

Fig. 8 shows the results for the finite differences family and the worst result is the
one arising from the Baskakov-Popov method. These (additional) artificial reflections in
Fig. 8(b) must be attributed to the discretization of the convolution integral only, as the
approximation used for the normal derivative for the Baskakov-Popov method and the
FD method (Fig. 8(a)) are the same. The best results in this group, namely the two curves
resulting from the FD and the Pole FD method (Fig. 8(d)), are indistinguishable. The PML
FD using the most simple PML, with a fixed thickness ρ and a uniform discretization in
the layer, yields a middle-rate outcome within this finite differences family.

Finally, Fig. 9 presents the contour plots when using finite elements in the computa-
tional domain. The methods using second order finite elements (Figs. 9(b), 9(d) and 9(f))
show no reflections. The FEM 1 (Fig. 9(a)) and Pole FEM 1 (Fig. 9(e)) methods shows an
equal high accuracy. Compared to the other first order finite element methods the PML
FEM 1 method (Fig. 9(c)) shows some slightly stronger reflections. The PML methods
based on finite elements employ Algorithm 1 for the choice of the PML discretization.
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Figure 8: Example 1: Finite differences family
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Figure 9: Example 1: Finite elements family.
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The methods based on finite differences or finite elements are similar with a light
advantage for the finite elements ones (see the comparison between FEM 1 — FD and
Pole FEM 1 — Pole FD (Figs. 9(a), 8(a), 9(e), 8(d))). This fact can be attributed to the
additional discretization error introduced by approximating the normal derivative.

6.1.2 Time evolution of the error

Fevens-Jiang family

Fevens

Kuska

Shibata

Approximation of the square root

Di Menza

Padé

Szeftel

Finite differences family

Arnold-Ehrhardt

FD

Baskakov-Popov

Pole FD

PML FD

Finite elements family

FEM 1

FEM 2

PML FEM 1

PML FEM 2

Pole FEM 1

Pole FEM 2

Figure 10: Symbols of the different methods.

Since we have the exact solution uex (6.2)
at hand, we compute in the sequel en, the
ℓ2-error at t = n∆t divided by the energy
of the exact solution in the computational
domain:

en =‖un
ex−un

num‖2/‖un
ex‖2,

where the spatial ℓ2-norm is given by

‖un‖2
2 =∆x

J−1

∑
j=1

|un
j |2, n∈N0.

Here, unum denotes the numerical solu-
tion obtained by the selected method. We
will call this the relative error. We iden-
tify each method with the help of the
symbolic representation given in Fig. 10.
The different methods realizing transpar-
ent boundary conditions are divided into
four groups. The first three groups include
all methods using finite differences in
the interior domain and the fourth group
consists of the methods that employ fi-
nite elements in the computational do-
main.

Fig. 11 shows the evolution of the
spatial relative ℓ2-error for all proposed
methods of Table 2 in a logarithmic plot.
For an easier comparison the Arnold-
Ehrhardt method (solid line with circled
markers) is again included in each sub-
sequent plot. It is obvious from the
Fig. 11 that the maximal ℓ2-error is lo-
cated around t = 0.5 is dominated by
the discretization error (except for the
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Figure 11: Example 1: Time evolution of the spatial ℓ2-error divided by the ℓ2-norm of the exact solution for
various methods and the discretization: J =1500 spatial grid points (∆x=0.01) and a time step ∆t=10−3.

10
−4

10
−3

10
−2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

∆ t

re
l. 

E
rr

L 2

(a) Fevens-Jiang and square root
approximation family

10
−4

10
−3

10
−2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

∆ t

re
l. 

E
rr

L 2

(b) Finite differences

10
−4

10
−3

10
−2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

∆ t
re

l. 
E

rr
L 2

(c) Finite elements

10
−4

10
−3

10
−2

10
−4

10
−2

10
0

∆ t

re
l. 

E
rr

T
m

(d) Fevens-Jiang and square root
approximation family

10
−4

10
−3

10
−2

10
−4

10
−2

10
0

∆ t

re
l. 

E
rr

T
m

(e) Finite differences

10
−4

10
−3

10
−2

10
−4

10
−2

10
0

∆ t

re
l. 

E
rr

T
m

(f) Finite elements

Figure 12: Example 1: rel.ErrL2 (a)-(c) and ErrTm (d)-(f) vs. ∆t for ∆x=4·10−4.

Fevens-Jiang family). However, reducing the discretization error by choosing a much
finer grid in space and/or time would lead to an unrealistic parameter setting for a 1D
problem. For the behaviour of the error using smaller values of the step sizes ∆x and ∆t
we refer to Section 6.1.3).

For all calculations the time step size is ∆t = 10−3. The spatial discretization is done
using J =1500 grid points, i.e., ∆x=0.01.
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Fig. 11(a) shows the evolution of the spatial relative ℓ2-error for the methods of the
Fevens-Jiang family. All these approaches yield strong reflections that have a magnitude
according to the chosen parameter m in (3.14). One clearly observes in Fig. 11(a) that the
square root approximation methods work better. Still there remains some deviation to
the reference curve and especially the error for the Szeftel method shows a considerable
increase in the long time. Fig. 11(b) confirms the findings from the preceding contour
plots. The results arising from the Baskakov-Popov method are slightly worse than those
obtained by the PML FD method. The best result in this finite difference group, are the
time discrete FD method and the Pole FD method, that are indistinguishable. Finally,
Fig. 11(c) shows the evolution of the ℓ2-error for the methods using finite elements in the
interior domain. The pairs Pole FEM 1 and FEM 1 coincide as well as Pole FEM 2 and
FEM 2. Moreover, the maximum of the error curve of the FEM methods is clearly below
the error curve of the Arnold-Ehrhardt method. The finite element methods of order two
coincide. They outperform the other methods by far. In Section 6.1.3 the convergence of
the methods will be analyzed more closely. The strongest reflections in this group arise
from the PML FEM 1 implementation.

6.1.3 Convergence analysis

In order to illustrate the remarks at the beginning of this Section 6 about the order of
convergence and to understand the influences of the step sizes ∆t and ∆x on the numer-
ical solution quality, we perform different simulations for all the methods on different
space-time meshes.

We decided to compute the following two error functions

rel.ErrTm= max
0<n<N

‖un
ex−un

num‖2/‖un
ex‖2,

rel.ErrL2 =

(
∆t

N

∑
n=1

‖un
ex−un

num‖2
2/‖un

ex‖2
2

)1/2

,
(6.3)

where N∆t=Tf . rel.ErrTm is the maximal relative ℓ2-error over all time levels n, 0<n<N,

and rel.ErrL2 denotes the spatial and temporal ℓ2-error scaled with the norm of the exact
solution.

Fig. 12 shows the convergence of the methods w.r.t. the temporal step size ∆t for fixed
∆x = 4·10−4. Analogously, the Fig. 13 shows the convergence of the methods w.r.t. the
spatial step size ∆x for fixed ∆t=10−4.

If the temporal ℓ2-error rel.ErrL2 is measured (Figs. 12 and 13 (a)-(d)) one observes
in each case except for the method of Baskakov and Popov a O(∆xp+1) resp. O(∆t2) be-
haviour. However, the error curves for the three methods of the Fevens-Jiang family in
Figs. 12(a) and 13(a) exhibit a very early saturation and lead to a plateau, i.e., from a cer-
tain (quite coarse) discretization it is not possible to further reduce the error by reducing
the step sizes. This is an inherent error in this group of methods. Furthermore, it can be
deduced that the reflections due to the truncation are about 2·10−2 for the Shibata method
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Figure 13: Example 1: rel.ErrL2 (a)-(d) and ErrTm (e)-(h) vs. ∆x for ∆t=10−4.

(m=2), 10−2 for the Kuska method (m=3) and 8·10−3 for the Fevens-Jiang method (m=4).
The methods of the square root approximation group in Figs. 12(a) and 13(a) also show
some saturation, but at a lower level. The truncation error of the Szeftel method is about
8·10−4. Taking into account the fact that the Szeftel method uses 3 coefficients only, this
is an excellent result. For the discretization parameters ∆t = 10−3 and ∆x = 10−2 the er-
ror for the Bruneau-Di Menza method saturates at about 2·10−4, which can be attributed
to the truncation. The thickness of the PML and the number of coefficients in the Pole
condition and in the Padé approximation — in each case 20 coefficients are used — is too
large to observe the truncation error. Fig. 12(c) shows a second order convergence for
∆t→0, except for the Baskakov-Popov method, where a O(∆t3/2) behaviour is observed.
Fig. 13(c) shows a O(∆x2) convergence in the ℓ2-error for the methods using linear finite
elements, and a O(∆x4) convergence for the ℓ2-error for finite elements of degree 2. The
FEM 2 methods perform better than expected.

6.1.4 Computational effort

Figs. 14 and 15 show the cpu time as a function of the number of time steps. For a
fine spatial mesh, Fig. 14 (J = 30000 unknowns) the solution of the linear system is the
most time consuming part of the algorithm. Hence, the different methods can hardly be
distinguished. In Fig.15 where we chose a coarser mesh with 1500 grid points one can
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Figure 14: Example 1: Number of steps vs. cpu time for various methods using a fine grid, ∆x=4·10−4.
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Figure 15: Example 1: Number of steps vs. cpu time for various methods using ∆x=0.01.
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Figure 16: Example 1: Work precision diagrams. For ∆t = 2·10−2,··· ,1·10−4 and ∆x = 0.2,··· ,4·10−4, the
smallest error obtained with the least cpu-time is shown.

clearly see that the Arnold-Ehrhardt, the FD, the FEM 1, FEM 2 and the Baskakov-Popov
methods do not scale linearly in N and that the quadratic operation count of the direct
convolution starts to dominate the computational costs. The comparatively high cpu time
consumption of the PML FD method has to be attributed to the simple choice of the PML
(linear damping, fixed layer thickness and uniform discretization). The results for PML
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Figure 17: Example 2: Contour plot of exact solution.

FEM methods show that with a good choice of parameters, the PML method competes
very well.

Fig. 16 shows the smallest error obtained at the minimal cost. For the Fevens-Jiang
family Fig. 16 (a) the relative ℓ2-error saturates at levels around 1. The saturation levels
for Szeftel’s and Di Menza’s method in Fig. 16 (a) are much lower. The comparison of the
methods based on finite elements with the finite difference method of Arnold-Ehrhardt in
Fig. 16 (c) reveals that the FEM methods in general outperform the finite difference meth-
ods, and that the quadratic finite element methods are superior to linear finite element
methods.

6.2 Numerical Example 2: Four Gaussian beams

Again the computational domain is chosen to be Ωint =]−12,3[ and the final time of
simulation is Tf =4. In order to point out some weakness of the Fevens-Jiang-type meth-
ods that are designed for one certain wave number we compute the evolution of four
Gaussian beams of the form (6.1) centered at xc =−9, −6, −2, 0, with the different wave
numbers k0 =5, −7, −12, 2. The initial data is cut-off close to xl =−12, xr =3 which does
not influence the numerical results.

6.2.1 Contour plot of the solution

Fig. 17 shows a contour plot of the solution. It can be observed that we have two faster
beams going to the left and two slower ones traveling to the right. Moreover, the two
slow beams are crossing each other approximately at the right boundary xr =3.

6.2.2 Time evolution of error

The following Fig. 18 presents the evolution of the spatial ℓ2-error for all proposed meth-
ods. For an easier comparison the Arnold-Ehrhardt method (solid line with circled mark-
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Figure 18: Example 2: Time evolution of the spatial ℓ2-error for the fixed discretization: J =1500 spatial grid
points and a time step ∆t=10−3.
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Figure 19: Example 2: rel.ErrL2 (a)-(d), ErrT f (e)-(h) vs. ∆t for ∆x=5·10−4.

ers) is again included in each subsequent plot. Note that we have to take a single value
for the modulus of the wave number for all three methods of the Fevens-Jiang family and
the pole condition. We decided to choose the mean of the modulus, i.e., k0 =6.5.

It is obvious from the Fig. 18 that the maximal ℓ2-error located around t=0.5 is dom-
inated by the discretization error (except for the Fevens-Jiang family).

The methods in subplot (a): Fevens-Jiang, Kuska and Shibata and the method of Szef-
tel all show strong reflections. This is due to the fact that they are tailored to be transpar-
ent for one k0.
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Figure 20: Example 2: rel.ErrL2 (a)-(d) and ErrT f (e)-(h) vs. ∆x for ∆t=10−4.
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Figure 21: Example 2: Work precision diagrams. For ∆t = 2·10−2,··· ,1·10−4 and ∆x = 0.2,··· ,4·10−4, the
smallest relative error obtained with the least cpu-time is shown.

6.2.3 Convergence analysis

Figs. 19 and 20 show the convergence of the methods w.r.t. the step sizes ∆t and ∆x. Here
we computed the two error functions

rel.ErrT f =‖uN
ex−uN

num‖2/‖uN‖2,

rel.ErrL2 =

(
∆t

N

∑
n=1

‖un
ex−un

num‖2
2/‖un

ex‖2

)1/2

,
(6.4)
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Figure 22: Example 3: Evolution of |u|, solution to Schrödinger equation with potential (6.5).

where N∆t=Tf . rel.ErrT f is the relative ℓ2-error at the final time Tf and rel.ErrL2 denotes

the spatial and temporal ℓ2-error scaled with the norm of the exact solution.
If the relative ℓ2-error rel.ErrL2 is measured, one observes in each case an O(∆t2) resp.

O(∆x2) behaviour. Fig. 19(d) shows the second order convergence for ∆t→0. Fig. 20(d)
shows a O(∆x2) convergence in the ℓ2-error for the methods using linear finite elements,
and again a O(∆x4) convergence, which is better than expected, for the ℓ2-error for finite
elements of degree 2. The FEM 2 method performs better than expected.

6.2.4 Computational effort

The plots showing cpu-time over the number of time-steps are identical to those for the
Example 1. Fig. 21 shows the work precision diagrams for this example, the smallest
error obtained at the minimal cost. The results are similar compared to ones obtained
for Example 1. For the Fevens-Jiang family in Fig. 21(a), the relative ℓ2-error saturates
at levels above 0.1. This is due to the fact that the ℓ2-norm of the exact solution does
not tend to 0 as rapidly as in Example 1. The comparison of the methods based on finite
elements with the finite difference method of Arnold-Ehrhardt in Fig. 21(d) again reveals,
even more clearly in this example, that the FEM methods in general outperform the finite
difference methods, and that the quadratic finite element methods are superior to linear
finite element methods.
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Figure 23: Example 3: Time evolution of the spatial relative ℓ2-error for the fixed discretization: J = 6.000
spatial grid points (∆x=3·10−3) and a time step ∆t=10−3.
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Figure 24: Example 2: Errors rel.ErrT f (a)-(d) vs. ∆x for ∆t=2·10−4.

6.3 Numerical Example 3: Application from quantum mechanics

Finally, in the last numerical example we want to present some practical application from
quantum mechanics. Thus, we consider the Schrödinger equation with a double barrier
stepped quantum well (DBSQW) potential, i.e., we consider the following equation

i∂tu=−1

2
∂2

xu+V(x,t)u, x∈R, t>0,

V(x,t)=





25/2 x∈ [0,0.5]∪[1.5,2],

5/2 x∈ (0.5,1),

0 elsewhere,

lim
|x|→∞

u(x,t)=0,

u(x,0)=
4

√
2

πσ2
exp

(
− (x−xc)2

σ2
+ik0(x−xc)

)
,

(6.5)

with the parameters σ=2, xc =−6, k0 =
√

7, on the computational domain Ωint =[−15,3].
This test is not a completely realistic test of quantum mechanics, but allows to see the

trap particles in the potential hole. We plot the evolution of the modulus of the solution in
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Figure 25: Screenshot of the Matlab software (Version 3) solver.

Fig. 22 for different values of the time t. We clearly see the wave captured in the potential
hole.

Since we do not dispose of an exact explicit solution, we compute a reference solution
by the FEM 2 scheme on the computational domain [−18,6], with J = 16.000 (∆x = 1.5·
10−3) and ∆t=10−4. The final time is Tf =16.

In Fig. 23 we plot the evolution of the relative ℓ2-error. There is a clear difference
between the finite element and the finite difference methods. The later exhibit a much
bigger error. This is due to the fact that in this example a non-smooth step function as
potential is used. Therefore a reduction in the rate of convergence for the finite-difference
approximation is observed as can be seen in Fig. 24.

Remark 6.1. There exists supplementary software (written in Matlab) with a graphical
user interface. Currently it covers the following implementations of TBCs/ABCs: (FD,
Arnold-Ehrhardt, Baskakov-Popov, Di Menza, Fevens-Jiang, Kuska, Pade, PML, PML-
FEM, Pole Condition, Shibata, Szeftel). Fig. 25 shows a screen shot of the software (Ver-
sion 3) solver.

This software can be downloaded from the authors’ home pages or at the site
http://www.tbc-review.de.vu .
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7 Conclusions

In this review we have presented several different techniques to solve numerically the
time-dependent Schrödinger equation on unbounded domains. We discussed and com-
pared several implementations of the classical transparent boundary condition and ab-
sorbing boundary conditions into finite difference and finite element discretizations. We
mainly addressed the one-dimensional case but also touched upon the situation in two
space dimensions and the cubic nonlinear case. Finally, we concluded with several nu-
merical examples comparing the proposed boundary conditions w.r.t. different kind of
errors and the cpu time. Moreover, we present a freely available graphical user interface
(written in Matlab) covering most of the presented approaches.

8 Future research directions

The next natural step is to carry some of the ideas of the (semi-)discrete TBCs to the non-
linear case. We refer to the recent paper [136] for a first step in this direction. However,
all previously used integral transform techniques does not work (in general) for nonlin-
ear equations and thus a valuable research direction seems to use discrete multiple scales
approaches instead in order to construct discrete ABCs for nonlinear evolution equations.

Future challenging problems for artificial boundary conditions will arise from high-
dimensional problems (e.g. the Black-Scholes equation for the pricing of multi-asset Amer-
ican options) and from large nonlinear systems, possibly including different time scales
(e.g. systems arising from climate modelling).
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DFG Research Center MATHEON “Mathematics for key technologies” in Berlin.

A Appendix: Fractional operators

The integration of real order p > 0 of a function f , denoted by I
p
t f (t), is given by the

Riemann-Liouville formula

I
p
t f (t)=

1

Γ(p)

∫ t

0
(t−τ)p−1 f (τ)dτ, (A.1)
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where Γ(z)=
∫ +∞

0 e−ttz−1dz is the Gamma function. This definition allows to define the

derivative ∂k−α
t f (t) of order k−α>0 of a function f , with k∈N and 0<α≤1:

∂k−α
t f (t)=

1

Γ(α)

dk

dtk

∫ t

0
(t−τ)α−1 f (τ)dτ. (A.2)

Other approaches to define fractional derivatives are due to Grünwald-Letnikov or Ca-
puto, e.g. Many properties of derivative operators can be extended from the integer to
the non-integer case, like the Leibniz rule and the chain rule [103], e.g.

For our applications, the Laplace transform of fractional derivatives plays an impor-
tant role:

F(s)=L{ f (t);s}=
∫ +∞

0
e−st f (t)dt, s∈C. (A.3)

The existence of the above integral is linked to the property that f must be of exponential
order. The original function f is recovered by the inverse Laplace transform

f (t)=L−1{F(s);t}=
∫ c+i∞

c−i∞
e−st f (t)dt. (A.4)

Here, c = Re(s) > c0, where c0 lies in the right half plane of absolute convergence of the
Laplace integral (A.3). Using the properties of the convolution ⋆ related to the Laplace
transform, one gets

I
p
t f (t)=

1

Γ(p)
(tp−1

⋆ f )(t), p>0,

since L
{

tp−1;s
}

= Γ(p)s−p. The Laplace transform of the Riemann-Liouville fractional
derivative of order p>0 satisfies

L
{

∂
p
t f (t);s

}
= spF(s)−

n−1

∑
k=0

sk[∂
p−k−1
t f (t)]|t=0,

for n−1≤ p<n.

B Appendix: Z-transformation

One main tool of this work is the Z-transformation [43] which is the discrete analogue
of the Laplace-transformation. The Z-transformation can be applied to the solution of
linear difference equations in order to reduce the solutions of such equations into those
of algebraic equations in the complex z-plane. In this paper we used it to solve the finite
difference schemes in the exterior domains in order to construct the discrete TBCs in
Sections 2.3 and 2.5.
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Definition B.1 (Z-transformation [43]). The formal connection between a sequence and
a complex function given by the correspondence

Z{ fn}= f̂ (z) :=
∞

∑
n=0

fn z−n, z∈C, |z|> R f̂ , (B.1)

is called Z-transformation. The function f̂ (z) is called Z-transformation of the sequence
{ fn}, n=0,1,··· and R f̂ ≥0 denotes the radius of convergence.

The discrete analogue of the Differentiation Theorem for the Laplace transformation
is the shifting theorem:

Theorem B.1 (Shifting Theorem [43]). If the sequence { fn} is exponentially bounded, i.e., there
exist C>0 and c0 such that

| fn|≤Cec0n, n=0,1,··· ,
then the Z-transformation f̂ (z) is given by the Laurent series (B.1) and for the shifted sequence
{gn} with gn = fn+1 holds

Z{ fn+1}= z f̂ (z)−z f0. (B.2)

The initial values enter into the transformation of the shifted sequence. As a useful
consequence of the shifting theorem we have:

Z{ fn+1± fn}=(z±1) f̂ (z)−z f0. (B.3)

The discrete convolution fn∗gn of two sequences { fn}, {gn}, n=0,1,··· is defined by

∑
n
k=0 fk gn−k. For the Z-transformation of a convolution of two sequences we formulate

the following theorem:

Theorem B.2 (Convolution Theorem [43]). If f̂ (z)=Z{ fn} exists for |z|>R f̂ ≥0 and ĝ(z)=

Z{gn} for |z|> Rĝ ≥0, then there also exists Z{ fn∗gn} for |z|>max(R f̂ ,Rĝ) with

Z{ fn∗gn}= f̂ (z) ĝ(z). (B.4)

Note that (B.4) is nothing else but an expression for the Cauchy product of two power
series. Finally, we present the inverse Z-transformation which is essential for formulating
the discrete TBCs in physical space.

Theorem B.3 (Inverse Z-transformation [43]). If { fn} is an exponentially bounded sequence
and f̂ (z) the corresponding Z-transformation then the inverse Z-transformation is given by

fn =Z−1
{

f̂ (z)
}

=
1

2πi

∮

C
f̂ (z)zn−1dz, n=0,1,··· , (B.5)

where C denotes a circle around the origin with sufficiently large radius.

The most important formula is the inverse Z-transformation of a product:

Z−1
{

f̂ (z) ĝ(z)
}

= fn∗gn =
n

∑
k=0

fk gn−k. (B.6)
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