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Abstract. This paper gives a systematic introduction to HMM, the heterogeneous mul-
tiscale methods, including the fundamental design principles behind the HMM phi-
losophy and the main obstacles that have to be overcome when using HMM for a
particular problem. This is illustrated by examples from several application areas, in-
cluding complex fluids, micro-fluidics, solids, interface problems, stochastic problems,
and statistically self-similar problems. Emphasis is given to the technical tools, such
as the various constrained molecular dynamics, that have been developed, in order to
apply HMM to these problems. Examples of mathematical results on the error analysis
of HMM are presented. The review ends with a discussion on some of the problems
that have to be solved in order to make HMM a more powerful tool.
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1 Introduction

The heterogeneous multiscale method, or HMM, proposed in [56] is a general framework
for designing multiscale methods for a wide variety of applications. The name “hetero-
geneous” was used to emphasize that the models at different scales may be of very differ-
ent nature, e.g. molecular dynamics at the micro scale and continuum mechanics at the
macro scale. Since its inception, there has been substantial progress on multiscale mod-
eling using the philosophy of HMM. The HMM framework has proven to be very useful
in guiding the design and analysis of multiscale methods, and in several applications, it
helps to transform multiscale modeling from a somewhat ad hoc practice to a system-
atic technique with a solid foundation. Yet more possibilities are waiting to be explored,
particularly in the application areas. Many new questions of physical, numerical or ana-
lytical nature have emerged. All these make HMM an extremely fruitful and promising
area of research.

The purpose of this article is to give a coherent summary of the status of HMM. It
is our hope that this summary will help the reader to understand the design principle
behind the HMM philosophy, the main obstacles that one has to overcome when using
HMM for a particular problem, and the immediate problems that have to be solved in
order to make HMM a more powerful tool.

Just what is HMM? After all many multiscale modeling strategies discussed in the
applied communities are heterogeneous in nature, i.e. they involve models of different
nature at different scales, so what is special about HMM? Through this review we will
show that HMM is a general framework for designing multiscale methods that can be
applied to a wide variety of applications. In a nutshell, the philosophy is as follows. As-
sume we are interested in studying the macroscale behavior of a problem for which the
macroscale model is only partly known or is valid only on part of the physical domain.
In typical situations, we either lack the detailed constitutive relation, or the macroscale
model is invalid due to the presence of defects or localized singularities. Assume, on
the other hand, that we do have an accurate microscale model at our disposal, but it is
too expensive to abandon the macroscale model completely and only use the microscale
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model. The HMM philosophy is to start with a carefully selected numerical method for
the macroscale model, as if the macroscale model is completely known and valid every-
where, and then focus on the question of how to get the needed data in order to imple-
ment the selected macroscale numerical method. In regions where the macroscale model
is invalid, or where constitutive relations are missing, we obtain the needed macroscale
data by solving the microscale model locally. This is the most important aspect of HMM:
It is a strategy for designing multiscale algorithms that are driven by the data. Its effectiveness
rests upon the fact that it allows us to make maximum use of the knowledge that we have
about the particular problem at all scales, macro and micro, as well as the special features
that the problem might have, such as scale separation or self-similarity. For instance if the
macro and micro time scales are separated, they are automatically decoupled in HMM.
In addition, HMM also suggests a unified approach for carrying out error analysis for a
large class of multiscale problems.

Despite all that, we will also see from this review that HMM only gives us a starting
point, applications of HMM to specific problems can be a highly non-trivial task. Issues of
formulation have to be resolved and technical tools have to be developed along the way.
The situation is similar to that of finite element methods: On one hand, finite element
offers a very attractive framework for designing numerical methods for a wide variety of
problems; on the other hand, applying this framework to a specific problem can be quite
non-trivial.

1.1 Classical and new multiscale methods

Almost all problems in science and engineering are multiscale in nature. Things are made
up of atoms and electrons at the atomic scale, and at the same time are characterized by
their natural geometric dimensions which are usually several orders of magnitude larger.
In the same way, atomic processes occur at the time scale of femto-seconds (10−15 second),
but events in our daily lives are happening at a much slower pace. Thus for every specific
problem that we encounter, we speak of the macroscopic scale as the particular scale that
we are interested in. All smaller scales are referred to as microscopic scales.

For many problems though, this multiscale nature is not that important. Effective
models can be obtained with satisfactory accuracy to account for the effects of micro-
scopic processes. In fact most scientific models are of this type. Consider the example
of fluid flow. There we are interested in the density and velocity fields of the fluid; the
effect of the molecular processes are modeled by the equations of state and the constitu-
tive relations. Most of these effective models are empirical, but there is also a substantial
amount of work on analytical derivations of these effective models from microscopic the-
ories [166, 185].

In spite of their tremendous successes, the effective models also have their limita-
tions. One main limitation is accuracy. This is particularly an issue for complex systems,
such as complex fluids. When the modeling error is larger than the solution error, the
usefulness of the model becomes a concern. A second limitation is the complete neglect
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of microscopic mechanisms which are sometimes of interest. Take the example of poly-
meric fluids. It is often of interest to know the microstructural information such as the
conformation of the polymers, not just the macroscopic flow field. The third limitation
is associated with the empirical nature of the models – especially for complex systems:
These effective models often do not have a solid foundation. For these reasons, one might
be tempted to switch completely to a microscopic model that has better accuracy, better
physics and better foundation. However this is not an optimal strategy not only because
the microscopic models are often too complex to handle, but also because that the data
we get are often quite redundant, complicated procedures are required to extract the in-
formation of interest. Indeed if we simulate crack propagation in a solid using molecular
dynamics, the data we obtain will be overwhelmed by the trajectories of atoms away
from the crack tip, which are of very little interest.

This is where multiscale modeling comes in. By coupling macroscopic and micro-
scopic models, we hope to take advantage of both the simplicity and efficiency of the
macroscopic models, as well as the accuracy of the microscopic models. Indeed the basic
task of multiscale modeling is to design combined macroscopic-microscopic computa-
tional methods that are much more efficient than solving the full microscopic model and
at the same time gives the information that we need to the desired accuracy.

From the viewpoint of numerical methods, there has already been a long history of
using multiscale ideas in methods such as the multi-grid method, fast multipole method
and adaptive mesh refinement. Wavelet representation makes explicit use of multiscale
decomposition of functions and signals. So what is new in the new breed of multiscale
methods, such as the quasi-continuum method and HMM? How are they different from
the more traditional multiscale methods such as multi-grid [27, 182]?

The difference between traditional multiscale methods such as multi-grid, and the
new multiscale methods such as HMM is that traditional multiscale methods are general
purpose microscale solvers. Their purpose is to resolve the details of the solutions of the
microscale model. The objective of the newly developed multiscale methods is to capture
the macroscale behavior of the system with a cost that is much less than the cost of full
microscale solvers. Specifically the new multiscale methods are designed to satisfy the
requirement

cost of multiscale method

cost of microscale solver on the full domain
≪1. (1.1)

Of course some compromise has to be made in order to achieve this.
1. We have to ask for less about the solutions of the microscale problem, e.g. we have

to be satisfied with getting only the gross behavior of the solutions, and the details
on part of the physical domain, not the details everywhere.

2. We must explore possible special features of the microscale problem, such as scale
separation, self-similarity, etc. Therefore these methods are less general than tradi-
tional microscale solvers.

One main challenge is to recognize such special features in a problem and make use of it.
This has been a common theme in current research in multiscale modeling. The disparity
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of time scales, for example, has long been a major obstacle in atomistic simulations such
as molecular dynamics. But in methods such as HMM, it is used as an asset.

As an example, consider the classical elliptic problem

−∇·(a(x)∇u(x))= f (x) (1.2)

on a smooth domain Ω with some boundary conditions. We will assume that f as well as
the boundary conditions are nice, with no small scales. But for a, let us distinguish three
different cases:

• The first is when a is a nice function with no small scale features.

• The second case is when a has multiple scales, but the small scales have some spe-
cial features such as separation of scales. In this case, we write a= aε where ε signi-
fies the small scale.

• The third case is when a has small scales and the small scales do not have any
special features.

The first case is clearly the simplest and the third case the most difficult. But despite
that the method for dealing with problems in these two extreme cases are not very differ-
ent: We just have to use efficient fine scale solvers, such as multi-grid and adaptive mesh
refinement methods. Even though in the third case the problems contain multiple scales,
it is not very helpful to write a=aε since no values of ε are particularly significant and we
just have to think of them as tough problems that require detailed resolution.

Modern multiscale methods are concerned with the second class of problems. In this
case, we have the possibility of capturing the large scale features of the solutions, using
methods that are much less costly than full fine scale solvers. This is the focus of methods
such as HMM.

Table 1: Classical and modern multiscale techniques. Classical multiscale techniques are general purpose solvers
for the fine scale problem. Recent multiscale modeling focuses on developing special purpose technique that
aim at further reducing the computational complexity by using special features of the fine scale problem, such
as scale separation.

Classical Techniques Recent Techniques

Multigrid Method [27] Car - Parrinello Method [30]
Domain Decomposition [143] Quasi-continuum Method [169]
Wavelet-based Methods [47] Optimal Prediction [42]
Adaptive Mesh Refinement [9] Heterogeneous Multiscale Method [56]
Fast Multipole Method [82] Gap-Tooth Scheme [95]
Conjugate Gradient Method [81] Adaptive Model Refinement [76]

Of course this division cannot be taken in strict terms. The more recent multiscale
techniques can also lead to new ideas for solving the fine scale problems. This will be
an important theme for further research: Can these new ideas in multiscale modeling be
used to develop techniques that can handle more general problems?
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1.2 Classification of multiscale problems

As we have just discussed, the first step in multiscale modeling is to recognize the special
features of the problem that one might take advantage of in order to design multiscale
methods that satisfy (1.1). For this purpose, it is useful to divide multiscale problems into
different categories according to their common features:

Type A: These are problems that contain isolated defects or singularities such as cracks,
dislocations, shocks and contact lines. For these problems, the microscopic model is only
necessary near defects or singularities. Further away it is adequate to use the macroscopic
model. In this case, the macro-micro coupling is localized.

Type B: These are problems that require “first-principle-based” constitutive modeling.
One example is the homogenization problem for equations of the type (1.2). Under fairly
general conditions that amount to scale separation for the coefficient aε, it can be shown
that the effective macroscale model takes the form [18]:

−∇·(A(x)∇U(x))= f (x), (1.3)

where A(x) is called the homogenized coefficient. Even though the homogenized coeffi-
cient can in principle be expressed in terms of the solutions of the underlying microscale
model (1.2), they are not explicitly given except for very special problems such as one-
dimensional problems. Ad hoc averaging techniques are in general not accurate enough.
It is then desirable to use (1.3) but with A(x) obtained directly from the underlying mi-
croscale model (1.2). In many cases, this is possible to do with a cost that is much less
than solving the full microscale model (1.2) over the entire macroscopic domain.

Type C: These are problems that have features of both type A and type B.

Type D: These are problems that exhibit self-similarity in scales. Examples include critical
phenomena in statistical physics, fractals and turbulent transport.

Clearly as research in multiscale modeling continues, more types of problems will be
identified. In this paper, we will focus on types A and B problems. We will only discuss
type D problems briefly.

1.3 Serial and concurrent coupling

Most current work on multiscale modeling is in the setting of the so-called “concurrent
coupling” methods [5], i.e. the microscale and the macroscale models are linked together
“on-the-fly” as the computation goes on. More recently, this approach has also been re-
ferred to as “solving equations without equations” or “equation-free” [95]. This is in con-
trast to the “serial coupling” method which determines an effective macroscale model
from the microscale model in a pre-processing step and uses the resulted macroscale
model in further applications. Serial coupling methods have been largely limited to “pa-
rameter passing”, and as such it is very widely used in applications, such as constructing
empirical atomistic potentials from quantum mechanics simulations, assigning hopping
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rates in kinetic Monte Carlo schemes using data from molecular dynamics, computing
transport coefficients using microscopic models, etc. But there is no reason why it should
be limited to this case. As long as the needed constitutive equation is known to depend on
very few variables, serial coupling provides a viable alternative to concurrent coupling
techniques. Concurrent coupling methods are preferred when the constitutive relation
depends on many variables, and therefore difficult to be extracted by precomputing.

A typical example is in the kinetic Monte Carlo simulation of epitaxial crystal growth.
When the set of possible configurations is pre-determined and is small, one typically
prefers pre-computing the transition rates using more refined models such as density
functional theory, i.e. the coupling is carried out in a serial fashion. However, when
consider morphology at a much larger scale and when coupling to continuum model is
concerned, the number of independent parameters becomes very large and therefore a
concurrent coupling approach is more preferred, as is done [167].

From a numerical viewpoint, the two strategies are very much related. The choice
between the two strategies is usually made on the grounds of computational cost. For
both serial and concurrent coupling methods, the key issue is to design microscopic sim-
ulations that give us the needed macroscopic data. In addition, the results of a concurrent
simulation can be used to suggest the functional form for the constitutive relation, which
can then be used in a serial coupling method. Therefore the two strategies can be com-
bined to yield optimal efficiency.

The HMM framework can be used both for concurrent and serial coupling methods.

Table 2: Comparison of the frequently used terminologies.

Terminologies adopted here Other terminologies

Serial coupling [5] Pre-computing
Microscopically-informed modeling
Parameter passing
Sequential coupling

Concurrent coupling [5] “On-the-fly” calculation [30]
Solving equations without equations
“Equation-free” [95]
Bridging scales [178]

Compression operator [56] Projection operator [27]
Coarse graining
Restriction operator [95]

Reconstruction operator [56, 105] Prolongation operator [27]
Reinitialization Lifting operator [95]

Domain decomposition Hand-shaking schemes
Bridging domains [181]
Hybrid schemes
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1.4 General strategies

When solving a PDE, the first step is to choose the type of methods that will be used.
These methods can be finite difference, finite element, finite volume, spectral or particle
methods. For problems with complex geometries, for example, we usually prefer finite
element methods. Once the general strategy is chosen, we still need to work on the de-
tailed discretization and the detailed algorithm. Similarly for multiscale modeling, the
first step is also to select a general strategy. Existing general strategies include

• Domain decomposition methods. This is particularly popular for type A problems.
In this approach, the macro and microscale models are solved on different domains
which may or may not overlap, and the two models are matched either over a
handshake region or across an interface.

• Adaptive mesh and model refinement. This is also referred to as adaptive algorithm
refinement [76], but we think “model refinement” is a better terminology. This is a
modification of the adaptive mesh refinement method, except for an added option
to switch to a more refined model when it is necessary.

• The heterogeneous multiscale method. This is the focus of the present review and
will be discussed in detail later.

• Gap-tooth schemes or patch dynamics. The main idea is to combine results of mi-
croscale simulations on small spatial and temporal domains via interpolation and
extrapolation to capture the large scale behavior, by exploiting scale separation.
This technique is particularly attractive for type B problems. But currently, there
are not enough specifics on how the strategy can be used for realistic problems.

Each strategy provides a starting point, and for particular problems they may lead
to very similar algorithms. No matter which strategy is used, the heart of the matter is
always how the macro and microscale models are coupled together. This issue may exist
in different forms: For domain decomposition methods, the issue is how to match the
different models in the handshake region or across the interface. For HMM, the issue
is how to impose the constraints on the microscale model to ensure consistency with
the local macro state, and how to extract the needed macroscale data from the results of
the microscale simulation. For gap-tooth schemes, the issue is how to link the different
microscale simulations on small boxes in order to mimic microscale simulations over the
whole domain. Real progress can only be made after these issues are clearly understood.

2 The HMM framework

2.1 The structure of HMM

We now turn to the framework of HMM. The general setting is as follows. We are given
a microscopic system whose state variable is denoted by u, together with a microscale
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U F(U, D) = 0
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Figure 1: Schematics of HMM framework.

model, which can be abstractly written as

f (u,b)=0, (2.1)

where b is the set of auxiliary conditions, such as initial and boundary conditions for
the problem. We are not interested in the microscopic details of u, but rather the macro-
scopic state of the system which we denote by U. It satisfies some abstract macroscopic
equation:

F(U,D)=0, (2.2)

where D stands for the macroscopic data that are necessary in order for the model to be
complete.

Denote by Q the compression operator that maps u to U, and R any operator that
reconstructs u from U:

Qu=U, RU =u. (2.3)

Q and R should satisfy: QR= I where I is the identity operator. Q is called a compression
operator instead of a projection operator since it can be more general than projection, e.g.
it can be a general coarse-graining operator, as in biomolecular modeling. The terminol-
ogy of reconstruction operator is adopted from Godunov schemes for nonlinear conser-
vation laws [105] and gas-kinetic schemes [183]. Compression and reconstruction opera-
tors are similar to the projection and prolongation operators used in multi-grid methods,
or the restriction and lifting operators in [95].

Examples of Q and R were given in [56].
The goal of HMM is to compute U using the abstract form of F and the microscale

model. It consists of two main components.

1. Selection of a macroscopic solver. Even though the macroscopic model is not avail-
able completely or is invalid on part of the computational domain, one uses what-
ever knowledge that is available on the form of F to select a suitable macroscale
solver.
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2. Estimating the missing macroscale data D using the microscale model. This is typ-
ically done in two steps:

(a) Constrained microscale simulation: At each point where some macroscale data
is needed, perform a series of constrained microscopic simulations. The mi-
croscale solution needs to be constrained so that it is consistent with the local
macroscopic state, i.e. b = b(U). In practice, this is often the most important
technical step.

(b) Data processing: Use the microscale data generated from the microscopic sim-
ulations to extract the needed macroscale data.

Data estimation can either be performed “on the fly” as in a concurrent coupling
method, or in a pre-processing step as in a serial coupling method. The latter is often
advantageous if the needed data depends on very few variables.

Before we turn to concrete examples, we should emphasize that HMM is not a specific
method, it is a framework for designing methods. For any particular problem, there is
usually a considerable amount of work, such as designing the constrained microscopic
solvers, that is necessary in order to turn HMM into a specific numerical method.

In the remaining part of this section, we will discuss examples of how HMM can be
used for some relatively simple problems.

2.2 Type B examples

2.2.1 ODEs with multiple time scales

We will discuss two simple examples of ODEs with multiple time scales. The first is stiff
ODEs with spectrum on the negative real axis, a prototypical example being:

{
ẋ=−1

ε
(x− f (y)),

ẏ= g(x,y).
(2.4)

The second is ODEs with oscillatory solutions. In this case the spectrum is located close
to the imaginary axis. A prototypical example is

{
ϕ̇=

1

ε
ω(I)+ f (ϕ, I),

İ = g(ϕ, I),
(2.5)

in action-angle variables, studied in averaging methods [11]. Here f and g are assumed
to be periodic in ϕ with period 2π and bounded as ε→0. In these examples x and ϕ are
the fast variables; y and I are the slow variables, which are also our macroscale variable
U.

Analytical and numerical issues for these problems have been studied for a long time.
We refer to standard reference books such as [11,86] where limiting equations as ε→0 are
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given for both (2.4) and (2.5). For (2.4), the fast variable x is rapidly attracted to the slow
manifold where x= f (y) and the effective equation for y is

ẏ= g( f (y),y)=: G(y). (2.6)

For (2.5), the quasi-periodic motion of ϕ can be averaged out as ε→ 0 and the effective
equation for I reads

İ =G(I) where G(I) :=
1

2π

∫ 2π

0
g(ϕ, I)dϕ. (2.7)

The idea of HMM is to use the existence of the limiting equations such as (2.6) or (2.7),
and some knowledge about their explicit form, to construct numerical schemes for (2.4)
or (2.5). These schemes will be useful for more complex situations where the limiting
equations are not given explicitly.

Consider (2.4) first. As the macroscale solver, we may select a conventional explicit
ODE solver such as a Runge-Kutta scheme or a linear multi-step method. We may also
select special purpose solvers such as the symplectic integrators. For illustration, let us
assume that we will use forward Euler as the macroscale solver. We can express it as

yn+1 =yn +∆tG̃n(yn). (2.8)

The time step ∆t is chosen to resolve the macroscale dynamics of interest, but not the
small scales.

The data that need to be estimated from the microscale model are the forces G̃n(yn)≈
G(yn). To estimate this data, we solve near t = tn a modified microscale model with the
constraint that the slow variables are kept fixed. For the example (2.4), this modified
microscale model is simply the equation for x, with y kept fixed, e.g.

xn,m+1 = xn,m− δt

ε
(xn,m− f (yn)), m=0,1,··· ,N−1. (2.9)
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N should be large enough such that xn,m as m→ N has converged to a stationary value
with the desired accuracy. We then take

G̃(yn)= g(xn,N ,yn). (2.10)

Notice that N is independent of ε, which indicates that the overall cost of HMM is inde-
pendent of ε.

The case of (2.5) can be treated similarly. Assuming that we use forward Euler as the
macroscale solver, we have

In+1 = In+∆tG̃n(In), (2.11)

where G̃n(In)≈G(In) must be estimated from the microscale model. For this purpose,
we use

ϕn,m+1= ϕn,m+
δt

ε
ω(In)+δt f (ϕn,m, In).

The difference with the previous example is that the estimation of G̃n(In) must now in-
volve an explicit time-averaging:

G̃n(In)=
1

N

N

∑
m=1

Km,Ng(ϕn,m, In), (2.12)

where the weights {Km,N} should satisfy the constraint

1

N

N

∑
m=1

Km,N =1. (2.13)

The specific choice of {Km,N} will affect the overall accuracy of HMM. (2.12) is called
an F-estimator [56]. Extensive analytical and numerical results using this methodology
can be found in [69, 160]. In the context of stiff ODEs, HMM can be considered as an
improvement of earlier ideas in [71, 77]. HMM has the additional advantage that it also
works for a class of oscillatory problems.

The choice of (2.10) can be viewed as a special case of (2.12) when Km,N =1 for m= N
and Km,N = 0, otherwise. This choice is optimal for dissipative stiff ODEs since the fast
variable exhibits a purely relaxational behavior.

The above strategy can be easily extended to more general problems in the form

ż=h(z,ε), (2.14)

provided that one has explicit knowledge of the slow variables in the system, which will
be denoted by y = Y(z). Note that h(z,ε) is in general unbounded as ε → 0 due to the
existence of fast dynamics. Again, let us use the forward Euler as the macro solver for
illustration:

yn+1 =yn+∆tF̃n(yn). (2.15)
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To estimate the force F̃n(yn), we solve the microscale problem (2.14) with the constraint
that Y(zn,m) = yn. As before, we used m as index for the time steps in the micro solver.
Using the relation

dy

dt
=∇zY(z)·h(z,ε),

we obtain an estimate of the effective force in the limiting equation for y by time averag-
ing:

F̃n =
1

N

N−1

∑
m=0

Km,N∇zY(zn,m)·h(zn,m,ε), (2.16)

where the weights {Km,N} must satisfy (2.13).

2.2.2 Elliptic equation with multiscale coefficients

Our last example was in the time domain. We next discuss an example in the spatial
domain. Consider the classical elliptic problem

{
−div

(
aε(x)∇uε(x)

)
= f (x), x∈D⊂R

d,

uε(x)=0, x∈∂D.
(2.17)

Here ε is a small parameter that signifies explicitly the multiscale nature of the coefficient
aε(x): It is the ratio between the scale of the coefficient and the scale of the computational
domain D. In the next section we will discuss finite element methods for problems of
this kind. Here we discuss an approach based on the finite volume method. This is
a simplified version of the methods presented in [3]. Similar ideas can also be found
in [51].

As the macroscale solver, we choose a finite volume method on a macroscale grid,
and we will denote by ∆x,∆y the grid size. The grid points are at the center of the cells,
the fluxes are defined at the boundaries of the cells. The macroscale scheme is simply
that on each cell, the total fluxes are balanced by the total source or sink terms:

−Ji− 1
2 ,j+ Ji+ 1

2 ,j− Ji,j− 1
2
+ Ji,j+ 1

2
=
∫

Ki,j

f (x)dx. (2.18)

Here Ki,j denotes the (i, j)-th cell.
The data that need to be estimated are the fluxes. This is done as follows. At each

point where the fluxes are needed, we solve the original microscale model (2.17) on a
square domain of size δ, with boundary condition: uε(x)−U(x) is periodic, where U(x)
is a linear function constructed from the macro state at the two neighboring cells, e.g. for
computing Ji+ 1

2 ,j, we have

U(x,y)=
1

2
(Ui,j+Ui+1,j)+

Ui+1,j−Ui,j

∆x
(x−xi+ 1

2
)

+
1

2

Ui+1,j+1+Ui,j+1−(Ui+1,j−1+Ui,j−1)

2∆y
(y−yj). (2.19)
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Figure 3: HMM finite volume method.

We then use

Ji+ 1
2 ,j =

1

δ2

∫

Iδ

jε
1(x)dx, Ji,j+ 1

2
=

1

δ2

∫

Iδ

jε
2(x)dx, (2.20)

where jε(x) = (jε
1(x), jε

2(x)) = aε(x)∇uε(x), to compute an approximation to the needed
flux.

The periodic boundary condition for the microscale problem is not the only choice.
Other boundary conditions might be used. We refer to Section 3 for a discussion in the fi-
nite element setting. More thorough discussion is found in [188]. To reduce the influence
of the boundary conditions, a weight function can be inserted in (2.20), similar to what is
done in the time domain earlier.

To implement this idea, note that the J’s are linear functions of {Ui,j}. Therefore to
compute the fluxes, we first solve the local problems with U replaced by the nodal basis
functions: Φk,l is the nodal basis function (vector) associated with the (k,l)-th cell if Φk,l is
zero everywhere except at the (k,l)-th cell center where it is 1. For each such basis func-
tion, there are only a few local problems that need to be solved, since the basis function
vanishes on most cells. Since U can be written as a linear combination of these nodal
basis functions, the fluxes corresponding to U can also be written as a linear combination
of the fluxes correspond to these nodal basis functions. In this way, (2.18) is turned into a
system of linear equations for U.

Now how do we choose δ? Clearly the smaller the δ, the less costly the algorithm is.
If the original problem (2.17) has scale separation, i.e. the microscale length ε is much
smaller than O(1), then we can choose δ such that ε≪δ≪1. This results in savings of cost
for HMM, compared with solving the original microscale problem on the whole domain
D.
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2.2.3 Kinetic schemes

Our next example is the derivation of numerical schemes for gas-dynamics that uses only
the kinetic model. Such schemes are called kinetic schemes (see for example [49,132,138,
153,183], see also the related work on Lattice Boltzmann methods [32,154]). This example
played an important role in developing the HMM framework. However, as will be seen
below, our viewpoint is slightly different from that of the original kinetic schemes.

The microscale model in this case is the kinetic equation, such as the Boltzmann equa-
tion:

∂t f +v·∇ f =
1

ε
C( f ). (2.21)

Here f = f (x,v,t) is the one-particle phase-space distribution function, which is also our
microscale state variable; C( f ) is the collision kernel; ε is the mean-free path between
collisions in the gas. The macroscale state variables U are the usual hydrodynamic vari-
ables of mass, momentum and energy densities, which are related to the microscale state
variable f by:

ρ=
∫

f dv, ρu=
∫

f vdv, E=
∫

f
|v|2

2
dv. (2.22)

(2.22) defines the compression operator Q.
The connection between Euler’s equation and the Boltzmann equation is as follows.

From the Boltzmann equation, we have:

∂t




ρ
ρu

E


+∇·F=0, (2.23)

where

F=
∫

R

f




v

v⊗v
1
2 |v|2v


dv. (2.24)

When ε≪1, the distribution function f is close to the local equilibrium states, or the local
Maxwellians,

M(x,v,t)=
ρ(x,t)

(2πθ(x,t))3/2
exp

(
− (v−u(x,t))2

2θ(x,t)

)
, (2.25)

with θ being the absolute temperature.
To design an HMM strategy, we first need to select a macroscale solver. We will focus

on the one-dimensional case. Since the macroscale model (2.23) is a set of conservation
laws, we will choose as the macroscale solver a finite volume scheme. We first divide the
computational domain in the physical space into cells of size ∆x. We denote by xj the
center position of the j-th cell, and xj+1/2 the boundary between the j-th and j+1-th cells.
For first-order methods, we represent the solution as piecewise constants, i.e.

(ρ,ρu,E)=(ρj,ρjuj,Ej), x∈ (xj−1/2,xj+1/2].
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The finite volume scheme takes the form:




ρn+1
j −ρn

j +
∆t

∆x

(
F

(1)
j+1/2−F

(1)
j−1/2

)
=0,

(ρu)n+1
j −(ρu)n

j +
∆t

∆x

(
F

(2)
j+1/2−F

(2)
j−1/2

)
=0,

En+1
j −En

j +
∆t

∆x

(
F

(3)
j+1/2−F

(3)
j−1/2

)
=0,

(2.26)

where Fj+1/2 =(F
(1)
j+1/2,F

(2)
j+1/2,F

(3)
j+1/2)

T is the numerical flux at the cell boundary xj+1/2.

The next step is to compute Fj+1/2 by solving locally the kinetic equation. To take into
account the wave character of the solutions, we write:

Fj+1/2 =F+
j+1/2+F−

j+1/2, with F±
j+1/2 =

∫

R±
f (x∓j+1/2,v,t)




v
v2

1
2 v3


dv. (2.27)

Normally one would numerically solve the kinetic model to obtain f . For the present
problem, it is much simpler to write down an approximate solution analytically. To lead-
ing order, we have:

f (x,v,t)∼M(x−vt,v,tn). (2.28)

Using this in (2.27), we obtain

F±=




ρuA±(S)± ρ

2
√

πβ
B(S)

(p+ρu2)A±(S)± ρu

2
√

πβ
B(S)

(pu+ρue)A±(S)± 1

2
√

πβ
(

p

2
+E)B(S)




, (2.29)

where

S=
u√
2θ

, p=ρθ, A±=
1+erf(S)

2
, B(S)= e−S2

,

and β=1/2θ. This is the simplest kinetic scheme [49]. The schematic is shown in Fig. 4.
This example illustrates the point that numerically solving the microscale model is

not the only way to obtain the needed data. Analytical solution is another possibility. In
some cases, one may obtain the needed data through statistical analysis of experimental
or other data.

How do we construct higher-order kinetic schemes? The standard practice is to con-
sider both higher-order reconstructions (for the initial value of f in the shaded-region in
Fig. 4) and solve the kinetic model to higher-order accuracy. This is the path followed, for
example, in [133,183] for constructing second-order kinetic schemes. From the viewpoint
of HMM, however, one would simply take a higher-order macroscale solver, such as the
ones in [122]. Then it is no longer necessary to use higher-order reconstructions for the
initial values of the kinetic model.
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Figure 4: Schematics for the derivation of kinetic scheme: A finite volume method is imposed in the
x−t domain, and the kinetic equation is solved (e.g. analytically) over the shaded region to give the
fluxes needed in the finite volume method. The v axis indicates the extra velocity variable in the kinetic
model, which represents the microstructure for the present problem.

2.2.4 Large scale molecular dynamics (MD) simulation of gas dynamics

In this example we discuss how HMM can be used to carry out macroscale gas-dynamics
calculations using only MD. The macroscopic equations are the usual conservation laws
of density, momentum and energy. In one dimension, it can be expressed in a generic
form:

∂tu+∂xf=0. (2.30)

Here f is the flux. Traditional gas dynamics models assume that f is a known function of
u. Here we do not make that assumption. Instead we will extract f from an underlying
atomistic model, namely, molecular dynamics (MD).

As the macroscale solver, we select a finite volume method. One example is the central
scheme of [122] on a staggered grid:

un+1
j+1/2 =

un
j +un

j+1

2
− ∆t

∆x

(
fn

j+1−fn
j

)
. (2.31)

The data that need to be estimated from MD are again the fluxes. This is done by
performing a constrained MD simulation locally at the cell boundaries, which are the cell
centers for the previous time step. The constraints are that the average density, momen-
tum and energy of the MD system should agree with the local macro state at the current
time step n. This is realized by initializing the MD with such constraints and apply the
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F(Uj )

F(Uj )
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Uj+1/2

MD

Figure 5: Central scheme: starting with piecewise constant solution, one computes fluxes at xj and xj+1, and
integrates the conservation laws to the next time step, where the grid points are shifted to the midpoints xj+1/2.
The numerical fluxes are evaluated with the help of MD.

periodic boundary condition afterwards. Using the Irving-Kirkwood formula (see Sec-
tion 4) which relates the fluxes to the MD data, we can then extract the macroscale fluxes
by time averaging the MD data. Ensemble averaging may also be used. We refer to [108]
for more details.

One result from such a method is shown in Fig. 6. Here the set-up for the macroscale
model is a Riemann problem for one-dimensional wave propagation in solids. The mi-
croscale model is two-dimensional MD with Lennard-Jone potential. The result of HMM
is compared with that of a direct MD simulation.

2.3 A type A example: Coupled kinetic-hydrodynamic simulation of shock
propagation

Our next example is continuum gas dynamics locally corrected near shocks by the kinetic
model. This is a type A problem. Problems of this type have been studied for a long time
in the kinetic theory community using domain decomposition methods (see for exam-
ple [22, 104]). The framework of HMM suggests a way of handling this problem that is
slightly different from what is done in the literature.

The macroscopic process is gas dynamics, the microscopic process is described by
a kinetic model. Therefore, as the macroscale solver, it is natural to choose the kinetic
schemes for gas dynamics. Away from shocks, the numerical fluxes are computed using
(2.29). At the shocks the numerical fluxes are computed by solving locally the kinetic
model using micro time steps. The kinetic model is constrained by the local macroscopic
state through the boundary conditions. As shown in Fig. 7, the kinetic equation is solved
in the shaded region between xl and xr (assume that the shock is at the cell boundary
xk+1/2). Boundary condition is needed at xl for v>0. For this we choose

f (xl ,v,t)= M(xl ,v,t), v>0, (2.32)
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Figure 6: Numerical test on shock formation and propagation in solids. 200 macro-grid points are used and each
local MD simulation consists of 40×10 atoms and 104 steps of time integration. The solution is displayed after
40 steps of integration over macro time steps. Solid line: computed solution; dashed line: full atom simulation
(one realization). Top: strain; middle: velocity; bottom: displacement.

where the right-hand side is the local Maxwellian corresponding to the macroscopic state
at xl , obtained by extrapolating the macro states in the cells to the left of xl. Boundary
condition at xr can be handled similarly. At xk+1/2, we define

Fk+1/2 =
1

τ

∫ tn+τ

tn
dt
{∫

R+
f (x−k+1/2,v,t)




v
v2

1
2 v3


dv+

∫

R−
f (x+

k+1/2,v,t)




v
v2

1
2 v3


dv

}
, (2.33)

for suitably chosen τ.
How do we choose τ? To address this question, we should note that there are po-

tentially two different cases of interest concerning corrections to gas-dynamics models of
shocks. The first is when non-equilibrium effects are important. In this case the relaxation
time of the gas inside the shock may become comparable to the hydrodynamic time, and
we should simply choose τ = ∆t. Note that in this case there is no time scale separation,
and the kinetic model is solved continuously throughout the shock region, with occa-
sional re-initialization as the shock region moves. This is shown schematically in the left
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Figure 7: Schematics for the coupled kinetic-gas dynamics simulation: A finite volume method is imposed
everywhere in the x−t domain. The numerical fluxes are computed using the kinetic scheme away from the
shocks, and directly from the solutions of the kinetic equations at the shocks. The shaded regions indicate where
the kinetic equation needs to be solved. The left panel illustrates the case when there is no scale separation
between the relaxation time scale inside the shock and the hydrodynamic time scale. The right panel shows the
case when there is time scale separation.

panel in Fig. 7. The second is when viscous or other higher order gradient effects are im-
portant inside the shocks, but there is still scale separation between the relaxation time of
the gas and the hydrodynamic time. In this case we should choose τ to be larger than the
relaxation time of the gas, but still smaller than ∆t. The specific choice should be made
adaptively by observing the numerical fluxes in (2.33) and select its stationary value (as
a function of τ). At each macro time step, the kinetic model needs to be re-initialized,
as discussed earlier for gas-kinetic schemes. A schematic is shown in the right panel in
Fig. 7.

The final component of the method is a criterion for locating the shock position. At
the present time, there is little systematic work in this direction.

2.3.1 Comparison with domain decomposition methods

With few exceptions, most existing approaches to type A problems are based on the idea
of domain decomposition [5, 6, 22, 23, 73, 84, 85, 91, 104, 123, 125, 130, 139]. The microscale
model is solved near the defects or singularities. The macroscale model is solved else-
where. The two domains may or may not overlap. The results from the two different
models are matched to ensure compatibility of the two models. Different possibilities
have been exploited according to whether one matches the macroscopic fields or the
fluxes.

In contrast, in the HMM approach the macroscale solver is imposed over the whole
domain. Near defects or singularities (here the shocks), the data (here the flux) required
by the macroscale solver is estimated from a microscale model. Therefore the HMM
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methodology is closer to that of (adaptive) model refinement [76, 126]: Near defects or
singularities, a more refined model is used to supply the data.

For the example discussed above, the model is adaptively refined at the shocks and
is replaced by the kinetic model for flux evaluation. The overall algorithm is still that
of a finite volume method. The kinetic model is used inside the finite volume scheme
to provide part of the data. In addition, HMM provides ways of further limiting the
size of the computational domain for the microscopic model, by exploiting time scale
separation so that the kinetic equation does not have to be solved for all time, or spatial
scale separation so that the kinetic equation is solved only in a very thin strip inside
the macro cells. This philosophy is opposite to that of over-lapping – it might be called
“under-lapping”. See Fig. 7.

2.4 The fiber bundle viewpoint

It is worth pointing out that when extracting the needed data from microscopic models,
one can think of the microscale model as been solved on a “virtual domain”: It is not nec-
essary to think of this domain as being part of the physical domain we are interested in.
The conceptual framework of HMM is very similar to that of fiber bundles: The physical
domain is the base manifold, the local microstructures are defined over the fibers. The
mapping from the fibers to the base manifold via the compression operator is a local op-
eration. This is a key conceptual difference between HMM and domain decomposition
or the adaptive model refinement methods. The latter two approaches make explicit use
of the fact that both the macro and micro models are defined on the same domain.

The algorithmic consequence of this concept is that under the framework of HMM,
the microscale computations carried out over different macroscopic locations communi-
cate with each other only through the macroscale solver. By thinking of the microstruc-
ture as been defined in a virtual space, we are naturally led to numerical algorithms
which are free of the limitations associated with filling up the macroscopic space and
time by the microscale grid points and time steps, and this is the reason why HMM en-
ables us to design numerical algorithms that are much more efficient than the brute force
microscale solvers.

Since HMM relies on a local connection between the microstructures and the macro
state, one might suspect that it is not as effective for problems with long range interac-
tions. At the present time, this issue remains to be addressed.

2.5 Recovering information about the microscale process

HMM is designed to capture the macroscale behavior of the underlying system. How-
ever, in many cases, particularly for type A problems, we are also interested in some
aspects of the microscopic behavior. Possibilities exist within the HMM framework to re-
cover such information. The microscale solutions obtained in the data extraction process
do provide samples for the local microstructure.
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In this connection, two questions remain to be answered. The first is the accuracy of
such microscale information. The second is the sense in which we speak about accuracy.
This is a general question in multiscale, multi-physics modeling. In many cases, we can
only expect to capture some statistical or qualitative aspects of the microscopic process.
At the present time, this problem has not been formulated in precise terms. We will come
back to such issues later on when we discuss other applications.

3 The heterogeneous multiscale finite element method

Consider

−∇·(kε(x)∇uε(x))= f (x), x∈Ω⊂R
d. (3.1)

Here ε is a small parameter that signifies explicitly the multi-scale nature of the coefficient
kε(x), which will be referred to as the conductivity tensor. Problems of this type have been
extensively studied in the context of heat or electric conduction in composite materials,
mechanical deformation of composites, etc [18]. In particular, the homogenization tech-
nique was initially developed for analyzing these problems [12, 13, 18]. However, except
for the case when the microstructure is locally periodic, it is difficult to make use of the
homogenized equations for numerical purpose. In addition, the homogenized equation
lacks information about the micro-scale behavior which is important for analyzing stress
distribution in composites, for example.

3.1 The macro-scale solver and the needed data

We will take a finite element approach. For (3.1), the macro-scale solver can be chosen
simply as the standard C0 piecewise linear finite element method over a macroscopic
triangulation TH of mesh size H. We will denote by XH the macroscopic finite element
space which could be the standard piecewise linear finite elements over TH.

The data that need to be estimated from the microscale model is the stiffness matrix
on TH: A=(Aij), where

Aij =
∫

Ω
∇Φi(x)KH(x)∇Φj(x)dx. (3.2)

Here KH(x) is the effective conductivity tensor at scale H and {Φi(x)} are the basis func-
tions for XH. Had we known KH(x), we could have evaluated Aij simply by numerical
quadrature: Let fij(x)=∇Φi(x)KH(x)∇Φj(x), then

Aij =
∫

Ω
fij(x)dx≃ ∑

T∈TH

|T| ∑
xk∈T

ωk fij(xk), (3.3)

where {xk} and {ωk} are the quadrature points and weights respectively, |T| is the vol-
ume of the element |T|.
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K

Figure 8: Illustration of HMM for solving (3.1). The dots are the quadrature points in (3.3). The little squares
are the microcell Iδ(xk).

In the absence of explicit knowledge of KH(x), our problem reduces to the approxi-
mation of the values of {KH(xk)}. This will be done by solving the original microscale
model locally around each quadrature point {xk} (See Fig. 8).

Let Iδ(xk)∋xk be a cube of size δ. Consider

−∇·
(
kε(x)∇φε

)
=0, x∈ Iδ(xk). (3.4)

The main objective is to probe efficiently the microscale behavior under the constraint
that the average (e.g. macroscale) gradient of the solution φε is fixed to be a given constant
vector. Having solutions to this local problem, we can define the effective conductivity
tensor at xk by the relation

〈kε(x)∇φε〉Iδ
=KH(xk)〈∇φε〉Iδ

, (3.5)

where 〈v〉Iδ
=(1/|Iδ|)

∫
Iδ

v(x)dx. The basis of this procedure is the homogenization theo-
rem which has been proved in various contexts; the most general result is found in [129].
The homogenization theorems allow us to define the effective (or homogenized) conduc-
tivity tensor, by considering the infinite volume limit of the solutions of the microscale
problem subject to the constraint that the average gradient remains fixed. The effective
tensor is defined by an average relation of the type (3.5) in the infinite volume limit, i.e.

L=
δ

ε
→∞.

In the special case when the microstructure is periodic, the infinite volume problem re-
duces to a periodic problem and therefore can be considered on its period.

In practice, one solves (3.4) with the constraint 〈∇φε〉Iδ
=e1,··· ,ed respectively, where

d is the spatial dimension of the problem. Denote these solutions by φε
j , j=1,··· ,d. Then

(〈kε(x)∇φε
1〉Iδ

,··· ,〈kε(x)∇φε
d〉Iδ

)=KH(xk). (3.6)

In summary, the overall algorithm consists of the following steps:
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• Solve for φε
1,··· ,φε

d using the boundary conditions discussed below, at each xk.
• Obtain the approximate values of KH(xk) by averaging the microscale solutions

using (3.6).

• Assemble the effective stiffness matrix using (3.3).
• Solve the macroscale finite element equation using the effective stiffness matrix. If

we express the macroscale solution in XH in the form of UH(x) = ∑UjΦj(x), then
the macroscale finite element equation takes the standard form:

AU = F, (3.7)

where U =(U1,··· ,UN)T, F=(F1,··· ,FN)T, and Fj =( f (x),Φj(x)).

The numerical solution UH obtained through this procedure contains information
about the average behavior of uε itself, but not its gradient. There is potentially an addi-
tional important step, which is to obtain information about the gradient of the solution,
either through some post-processing techniques or by analyzing the solutions of the mi-
croscale problems φε. However, the details of this last step remains poorly understood.
We will come back to this point later.

3.2 The constrained micro-scale solver

The local microscale problem is constrained by the local macroscopic state through the
constraint

〈∇φε〉Iδ
=G (3.8)

for some fixed constant vector G. [188] considered three different types of boundary con-
ditions for the local problem.

1. Dirichlet Formulation.

φε(x)=G ·x, on ∂Iδ. (3.9)

2. Periodic Formulation.

φε(x)−G ·x is periodic with period Iδ. (3.10)

3. Neumann Formulation.

kε(x)∇φε(x)·n=λ·n, on ∂Iδ, (3.11)

where the constant vector λ∈Rd is the Lagrange multiplier for the constraint that

〈∇φε〉=G. (3.12)

For example when d=2, to solve problem (3.11) with the constraint (3.12), we first solve
for u1 and u2 from

{ −∇·(kε(x)∇ui)=0, in Iδ,
kε(x)∇ui(x)·n=µi ·n, on ∂Iδ,

(3.13)



W. E et al. / Commun. Comput. Phys., 2 (2007), pp. 367-450 391

for i=1,2, where µ1 =(1,0)T , µ2 =(0,1)T. Then given an arbitrary G, the Lagrange multi-
plier λ=(λ1,λ2)T is determined by the linear equations

λ1〈∇u1〉+λ2〈∇u2〉=G (3.14)

and the solution of (3.11)-(3.12) is given by φε =λ1u1+λ2u2.
One can check easily that 〈∇φε(x)〉=G holds for all three formulations.
The performance of these formulations was carefully studied in [188]. The main con-

clusions were:

1. Periodic boundary condition performs better than the other two formulations.

2. The variance of the estimated effective tensor behaves as σ2 ∼ L−d for the random
checker-board problem, and σ2 ∼ L−2 for the periodic problem.

3. In general Neumann formulation underestimates the effective tensor and Dirich-
let formulation overestimates the effective tensor. In both cases, the effective con-
ductivity tensors converge to the infinite volume limit with first order accuracy
O(1/L), where L is the cell size.

This method is extended in [186] to study the elastic deformation of functionally
graded materials.

HMM in this case resembles the idea of representative volume averaging that is com-
monly used in subsurface flow modeling, with Iδ playing the role of the representative
volume. In representative volume averaging, the microstructural information is usually
discarded after the effective conductivities are extracted out. This is unsatisfactory since
the microstructural information is particularly important in this case – it contains infor-
mation about stress distribution in composite materials or velocity fields in porous media.
The HMM philosophy puts more emphasis on the interaction between the macro and mi-
croscale behavior. For example, the solutions of the microscale problem (3.5) do contain
useful information about the gradients of the solution uε. However, at the present time,
very little systematic work has been done on how such information can be extracted,
except for the simple case when the microstructure is periodic.

3.3 Other multiscale finite element methods

An alternative proposal for constructing multiscale finite element methods is to modify
the basis functions in the finite element space by solving, for each element, the orig-
inal microscale problem with vanishing right-hand side and suitable boundary condi-
tions [13–16, 88, 112]. The modified basis functions are used to constructive the effective
stiffness matrix on the coarse grid. This idea was first introduced by Babuška et al. [14]
in the context generalized finite element methods for solving elliptic equations with general
rough coefficients. For problems with multiscale coefficients, Hou et al. [88] introduced
overlapping in order to alleviate the difficulties with local boundary conditions. Some
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rudimentary versions of this idea was also suggested in [112] for solving Helmholtz equa-
tions by using oscillatory functions as basis functions.

Once the basis functions and the effective stiffness matrix is computed, the modified
basis function method works efficiently as a coarse grid method. The main problem,
however, is in the overhead for computing the basis functions. This overhead is already
comparable with solving the original microscopic problem, if a linear scaling method
such as multi-grid is used. As all other upscaling methods, the goal of both HMM-FEM
and the modified basis function method is to obtain the effective stiffness matrix at the
macroscale. The difference lies in how this goal is achieved. HMM-FEM approximates
the stiffness matrix directly by performing local simulations of the original microscale
model. The size of the local simulation can be chosen according to the special features of
the problem. In particular, one may choose the domains of the local problems such that
they overlap with each other and their union covers the whole computational domain.
This would make HMM-FEM very close to the modified basis function methods, and
most likely also defeat the purpose of HMM-FEM. The modified basis function method
obtains the effective stiffness matrix by going through an intermediate step, namely mod-
ifying the basis functions and as a result, the original finite element space. This limits its
flexibility in exploring the multiscale features of the underlying problem. Indeed, with
the modified basis function method, solving a problem with structure is as hard as solving
a problem without structure. On the other hand, these techniques might be of some use
if the problem (2.17) is solved repeatedly with different right hand side, in which case
they can be used as pre-processing techniques, in the same way as LU decomposition,
computation of Schur complements [68], and sub-structuring methods [24].

For a more detailed discussion of these methods and their relative performance, we
refer to [119]. It was found, among other things, that the accuracies of HMM-FEM and
the modified basis function method are generally comparable, despite the difference in
cost.

For the special case when the microstructure of aε is locally periodic, several other
methods have been proposed. Some are based on solving the homogenized equations,
plus next order terms [44]. One interesting idea, proposed by Schwab et al. [157, 158],
uses multiscale test functions. In this case, the finite element space has a tensor product
structure, which can be exploited to compensate for the increased dimensionality caused
by using the multiscale test functions.

4 Complex fluids and microfluidics

The behavior of liquids is usually very well described by the classical Navier-Stokes
equations with the no-slip boundary condition. There are two notable exceptions. The
first is non-Newtonian fluids such as polymeric fluids. In this case the constitutive equa-
tions are more complex than that of Newtonian fluids, for which the viscous stress is
simply a linear function of the rate of strain. The second is micro-fluidics. In this case the
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geometry of the flow domain is so small that the no-slip boundary condition is no longer
accurate enough.

Three different levels of models are commonly used in the modeling of liquids: molec-
ular dynamics, Brownian dynamics, and hydrodynamics. We will discuss the case when
the microscale model is molecular dynamics and the macroscale model is hydrodynam-
ics. But some of the issues that we will discuss are also relevant if the microscale model
is Brownian dynamics. For simplicity we will assume that the flow is incompressible.
Extending the methodology to compressible flows is quite straightforward. This section
is taken mostly from [146].

4.1 The macroscale and microscale models

At the continuum level, the dynamics of incompressible flow has to obey conservation
laws of mass and momentum: {

ρ∂tu=∇·τ,
∇·u=0,

(4.1)

where the momentum flux −τ = ρu⊗u−τd. Here ρ is the density of the fluid which is
assumed to be a constant, u=(u,v) is the velocity field, and τd is the stress tensor. We will
limit ourselves to the situation when the flow is macroscopically two-dimensional (mi-
croscopically it is of course three-dimensional). But extension to macroscopically three-
dimensional flows is straightforward. At this stage the system is not closed since the
stress tensor is yet to be specified. Traditionally the idea has been to close this system by
an empirically postulated constitutive relation, such as

τd =−pI+µ(∇u+∇uT) (4.2)

for simple fluids. In this case, all information about the molecular structure is lumped
into one number, the viscosity µ. Here we are interested in the situation when empir-
ical constitutive relations are no longer accurate enough, and more information at the
microscopic level is needed.

Another important component in the model is the boundary condition. Almost all
macroscopic models assume the no-slip boundary condition

u=u0, (4.3)

where u0 is the velocity of the boundary. This is adequate in many situations, but be-
comes questionable for some problems in micro-fluidics.

For the microscopic model, we will use molecular dynamics (MD). Using standard
notations for liquids, we have {

miẋi(t)=pi(t),
ṗi(t)=Fi,

(4.4)

i=1,2,··· ,N. Here mi is the mass of the i-th particle, xi and pi are its position and momen-
tum respectively, Fi is the force acting on the i-th particle. To examine the behavior of the
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fluid flow near a solid boundary, we should also model the vibration of the atoms in the
solid next to the fluid-solid interface. Therefore one should consider the fluid-solid sys-
tem as a whole. We will work in the isothermal setting, and the Nosé-Hoover thermostat
can be used to control the temperature of the system [75].

The connection between the atomistic and the continuum models is made as follows.
Given the microscopic state of the system {xi(t),pi(t)}i=1,2,···,N , we define the empirical
momentum distribution

m(x,t)=∑
i

pi(t)δ(xi(t)−x), (4.5)

where δ is the Delta function. Momentum conservation can then be expressed in terms
of the microscopic variables as:

∂tm=∇·τ(x,t), (4.6)

where the momentum current density τ(x,t) is given by the following Irving-Kirkwood
formula [90]:

τ(x,t)=−∑
i

1

mi
(pi(t)⊗pi(t))δ(xi(t)−x) (4.7)

− 1

2∑
j 6=i

(
(xi(t)−xj(t))⊗Fij(t)

)∫ 1

0
δ(λxi(t)+(1−λ)xj(t)−x)dλ,

where Fij(t) is the force acting on the i-th particle by the j-th particle.
An important issue in molecular dynamics is how to model the atomistic forces ac-

curately. The algorithms that we will discuss are quite insensitive to the details of the
atomistic potential. For simplicity we will work with the simplest situation when the
interaction between particles is pair-wise and the pair potential is the Lennard-Jones (LJ)
potential in a slightly modified form:

VLJ(r)=4ε

((σ

r

)12
−η
(σ

r

)6
)

. (4.8)

Here r is the distance between the particles, ε and σ are characteristic energy and length
scales respectively. The parameter η controls the nature of the interaction between parti-
cles. When η =1, (4.8) defines the usual LJ potential which is attractive at long distance.
Repulsion between particles of different species can be modeled using negative values of
η.

It proves convenient to use the reduced atomic units. The unit of length is σ. The unit
of time is σ

√
m/ε. For temperature it is ε/kB where kB is the Boltzmann constant, and for

density it is m/σ3. The unit of viscosity is (εm)1/2/σ2. The unit of surface tension is ε/σ2.

4.2 Type B problems: Atomistic-based constitutive modeling

4.2.1 Macroscale solver

As the macroscopic solver, we choose the projection method on a staggered grid [39, 40].
The projection method is a fractional step method. At each time step, we first discretize
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Figure 9: Schematic of the spatial discretization of the continuum equations in (4.1). u is defined at (xi,yj+ 1
2
),

v is defined at (xi+ 1
2
,yj), and p is at the cell center (xi+ 1

2
,yj+ 1

2
). τ11 and τ22 are calculated at the cell center

indicated by circles, and τ12 is calculated at the grid points indicated by squares.

the time derivative in the momentum equation by the forward Euler scheme to obtain an
intermediate velocity field:

ρ
ũn+1−un

∆t
=∇·τn, (4.9)

where τn is the momentum flux. For the moment, pressure as well as the incompressibil-
ity condition are neglected. Next the velocity field ũn+1 is projected onto the divergence-
free subspace:

ρ
un+1−ũn+1

∆t
+∇pn+1 =0, (4.10)

where pn+1 is determined by

∆pn+1 =
ρ

∆t
∇·ũn+1, (4.11)

usually with Neumann boundary condition.

The spatial discretization is shown in Fig. 9. For integer values of i and j, we define u
at (xi,yj+1/2), v at (xi+1/2,yj), and p at the cell center (xi+1/2,yj+1/2). The diagonals of the
flux τ are defined at (xi+1/2,yj+1/2), and the off-diagonals are defined at (xi,yj). The op-
erators ∇ and ∆ are discretized by standard central difference and the five-point formula
respectively. The use of this grid simplifies the coupling with molecular dynamics.

4.2.2 Estimating the stress

The data that need to be estimated from molecular dynamics are the stresses. Here we
will make a constitutive assumption, namely that the stress depends only on the rate
of strain. We do not need to know anything about the specific functional form of this
dependence.

The key component in estimating the stress is to construct a constant rate-of-strain
ensemble for the MD. This is done through a modified periodic boundary condition.
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4.2.3 Constrained microscopic solver: Constant rate-of-strain MD

There exists an earlier work due to Lees and Edwards [103] in which the periodic bound-
ary condition is modified to maintain a constant shear in one direction. This is done by
shifting the periodic copies of the simulation box above and below in opposite directions
according to the given shear profile. This idea was extended to situations with general
linear velocity profiles in [146].

Without loss of generality, we will consider the situation when the macroscopic ve-
locity profile is of the form




u
v
w


=




a b 0
c −a 0
0 0 0






x
y
z


= Ax. (4.12)

To initialize the MD calculation, one may simply start with a perfect lattice configuration
in a rectangular box. Each particle is given a mean velocity according to (4.12), plus a
random component with mean 0 and variance kBT, where T is the desired temperature
and kB is the Boltzmann constant.

Deforming the simulation box. Periodic boundary condition is imposed on a dynami-
cally deforming simulation box, whose vertices move according to

ẋ= Ax, A=




a b 0
c −a 0
0 0 0


. (4.13)

Intuitively it is helpful to think of the simulation box as been embedded in the whole
space.

The shape of the deformed box at a later time is shown in Fig. 10(b). Suppose at this
point a particle crosses the boundary at P(x), with velocity u, it will return to the box at
P′(x′) with a modified velocity

u′=u+A(x′−x), (4.14)

where P′ is the periodic image of P with respect to the deformed box.

It is easy to see that if the velocity field is a pure shear

A=




0 b 0
0 0 0
0 0 0


, (4.15)

then this boundary condition becomes simply the Lees-Edwards boundary condition.

Re-initialization. As the simulation proceeds, the simulation box will in general become
quite elongated in one direction and narrowed in the other direction (see Fig. 10(c)). If
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the box is significantly deformed, we need to re-initialize the configuration. An approx-
imate re-initialization procedure is discussed in [146]. A more accurate re-initialization
procedure that makes use of reproducing lattice is discussed in [147].

The MD simulation keeps track of the positions and velocities of all particles as func-
tions of time, from which the instantaneous momentum flux tensor can be calculated
using the Irving-Kirkwood formula (4.7).

In practice, (4.7) is averaged over the simulation box. This gives

−τ(t)=
1

|Ω| ∑
xi∈Ω(t)

1

mi
(pi⊗pi)+

1

2|Ω|∑
j 6=i

dij(xi−xj)⊗Fij, (4.16)

where in the first term the summation runs over particles inside the box, and in the sec-
ond term the summation is over all pairs of particles including their images. Here dij is
defined as

dij =





1, if xi,xj ∈Ω,
0, if xi,xj /∈Ω,
c, if only one of xi,xj is in Ω,

(4.17)

where 0≤ c≤ 1 is the fraction of |xi−xj| being cut by the box. Therefore besides contri-
butions from the particles inside the box, particles outside the box also contribute to the
stress, as illustrated in Fig. 11.

Eq. (4.16) gives the instantaneous stress at the microscopic time t (see Fig. 12). To
extract the macroscopic stress, (4.16) is averaged over time to give an estimate for the
macroscale stress:

τ =
1

T−T0

∫ T

T0

τ(t)dt, (4.18)

where T0 is some relaxation time.

In Fig. 12, we show two numerical examples of the calculated stress. In atomic units
the density is ρ = 0.79 and the temperature is fixed at 1.0 in the first example but not in
the second which is not coupled to any thermostats. The stress diverges in this case due
to viscous heating.

As a simple validation of this procedure, we show in Fig. 13 the computed shear
stress as a function of shear rate for LJ fluids. These data fit quite well to a linear function
indicating a linear relation between stress and the rate of strain. The viscosity can be
computed by estimating the slope. This gives a value of 2 which agrees well with results
in the literature [171].

To summarize, at each macro time step k, the overall algorithm looks as follows:

Step 1 Calculate the needed stresses by constrained local MD simulations;

Step 2 Using the projection method and the computed stresses to get uk+1.
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Figure 10: Periodic boundary conditions on a dynamically deforming box.
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Figure 11: Computing averaged stress: Besides the contributions from the particles inside the box to the
averaged stress, the particles outside the box also contribute, such as CD and EF.

4.2.4 Fluid dynamics of chain molecules

This algorithm was validated on a simple example of pressure-driven cavity flow, and
applied to a number of other examples, including the driven cavity flow, and a system of
dumbbell fluids with FENE potential. Here we briefly report the results for the dynamics
of chain molecules that represent flexible polymers. More details are found in [144].

In [144] a bead-spring model of chain molecules is used to represent the flexible poly-
mers, with a total of N beads for each chain. The interaction potential between the beads
has two parts. The first is the LJ potential which acts on all beads in the system. The
second is the spring force given by the FENE potential:

VFENE(r)=





−1

2
kr2

0 ln

(
1−
(

r

r0

)2
)

, r< r0,

∞, r≥ r0.

(4.19)

The values k = 1 and r0 = 2.5 were used. The density of the beads is 0.79. N = 12. The
slip boundary condition suggested in [137] was used. [144] also reports results from com-
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Figure 12: Instantaneous stress as a function of the microscopic time. Solid line: −τ12; dashed line: −τ11;
dotted line : −τ22. The temperature is fixed in (a) but not in (b), where the stress diverges due to viscous
heating. In both case, u=0.18y, v=0.
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Figure 13: Shear stress as a function of shear rate for simple LJ fluids. The discrete points are obtained from 3d
MD simulation, and they fit very well to a linear function with slope 2 which is the viscosity. All the quantities
are expressed in the atomic unit.

putations that treat this as a type C problem and extract boundary conditions using the
algorithm described next for type A problems. The results are basically the same.

At small driving force, there is only partial slip between the fluid the solid. The ve-
locity profile converges to steady state, as shown in Fig. 14. This steady state profile is
compared with the standard Poiseuille profile at the zero-shear-rate viscosity. Besides
the partial slip, we also see that the profile for the chain molecules has larger curvature,
a characteristic of shear thinning fluids. This is confirmed by the plot of the effective
constitutive relation used in the HMM simulation at the steady state.



400 W. E et al. / Commun. Comput. Phys., 2 (2007), pp. 367-450

η=7.5 

(a) 

5 15 25

5

−5

5

15

25

x

y

z

(b) 

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Shear rate

τ

(c) 

0 0.05 0.1 0.15 0.2 0.25
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Shear rate

η

(d) 

Figure 14: (a): Steady state velocity profile for the polymer fluid made up of chain molecules (solid line),
compared with that of the Newtonian fluid (dashed line). We observe partial slip, as well as shear-thinning.
(b): A partial sample of the conformation of the chain molecules in a typical MD simulation. (c): Shear stress
as a function of shear rate. (d): Viscosity as a function of shear rate. In (c) and (d), to make the results
more transparent, we supplemented the results from the HMM calculation by results from pre-computing: The
more noisy results at small shear rates are from HMM calculation, the smoother results at higher shear rates
are obtained via pre-computing.

4.3 Type A problems: Modeling boundary conditions

In the discussions above we were concerned with the constitutive relations for complex
fluids. Here we will discuss boundary conditions for micro-fluidics. One most important
aspect of micro-fluidics is the significance of line and surface tension. Therefore as our
primary examples, we choose the Marangoni flow and the contact line problem. For
these problems, the need for coupling with MD comes from the complex fluid-solid and
fluid-fluid interaction near the wall.

4.3.1 Marangoni flows

We will discuss a specific example of the Marangoni flow, namely channel flow driven
by complex solid-fluid interactions which are modeled by molecular dynamics.

The HMM procedure goes as follows. The macroscopic solver is the same as before,
i.e. a finite-volume projection method on a staggered grid. This simplifies the next step,
which is to obtain the boundary condition from MD.
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Figure 15: Schematic of the multiscale method for the example of Marangoni flow. In the left panel, the
finite volume grid is indicated by the dotted lines. The boundary condition at AB is extracted from molecular
dynamics simulations confined in ABCD. The set-up of the MD simulation is shown in the right panel. Particles
are confined by a repulsive force at GH and the solid wall at AB. The dynamics of the particles in the strip CD
are constrained by the continuum velocity field. The boundary conditions are extracted from the small bins at
the lower boundary. Black dots represent atoms in the solid.

The needed data in the finite volume projection method are the tangential stresses at
the boundary.

The schematic of the MD is shown in Fig. 15. Periodic boundary condition is imposed
in the x- and z-direction. In the y-direction, the fluid is confined by a solid wall at AB and
a repulsive force at GH. One choice of this repulsive potential is the repulsive part of the
LJ potential:

P(r)= ε
(σ

r

)12
, (4.20)

where r is the distance to GH. Similar techniques for confining particles were used in
[84, 85].

The MD is constrained by the macroscale velocity field. This is done as follows.
Each particle in the strip CD is assigned the velocity: u(x) = uc(x)+ũ, where uc(x) is
the velocity from the continuum calculation and ũ is the thermal velocity that obeys the
Maxwellian distribution at some temperature T. Therefore the strip plays a two-fold role
here: As a momentum reservoir it maintains the non-equilibrium dynamics at the steady
state; as a thermal reservoir it releases heat generated by viscous flow from the system.

The solid wall also needs to be explicitly modeled, here as a crystal lattice. Geometric
as well as chemical heterogeneities can be modeled by choosing appropriate atomistic
potentials (see [140, 146]).

After a relatively short equilibration time, the stresses are estimated using the Irving-
Kirkwood formula, as was done before.

Fig. 16 shows some results of the effective boundary conditions extracted from the
molecular dynamics simulation. For more numerical results, we refer to [146].

The overall algorithm for a typical macro time step k is as follows:

Step 1 Calculate the stress at the boundary AB by local MD simulation. The MD is con-
strained by uk;
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Figure 16: (a): the velocity at the lower boundary; (b): the stress extracted from MD (solid curve) and fitted
by fourth-order B-splines (dashed curve).

Step 2 Solve the continuum equations to get uk+1.

4.3.2 Contact line dynamics

We next consider the motion of two immiscible fluids on a solid surface. Continuum
hydrodynamics breaks down in the vicinity of the contact line, where the fluid-fluid in-
terface meets the solid surface. Specifically the usual no-slip boundary condition used in
macroscopic fluid dynamics leads to an unphysical divergent shear stress and dissipation
rate [52]. Molecular dynamics simulations of Couette or Poiseuille flow show relative slip
between the fluid and the wall around the contact line [141, 171].

As for the previous example, a HMM procedure is called for in order to obtain bound-
ary conditions from MD. However the present problem is quite a bit more complicated.

Macroscale solver

As the macroscale model, we take





ρ∂tu=∇·τ,
∇·u=0,
ẋΓ =u,

(4.21)

where the momentum flux in continuum theory is given by

−τ =ρu⊗u+pI−µ(∇u+∇uT)+γ(I−n̂⊗n̂)δΓ− f0xI. (4.22)

The last equation in (4.21) says that the fluid-fluid interface xΓ(t) is advected by the ve-
locity field of the fluid. The first term in the momentum flux is due to convection, the
second term is the pressure, the third term is the viscous stress, the fourth term corre-
sponds to the surface tension force which is concentrated at the fluid-fluid interface xΓ
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(δΓ is the surface delta function), and the last term is the external force. I is the identity
matrix, γ is the the surface tension coefficient and n̂ is the unit normal of the interface.

In the numerical calculations, it is standard to replace the surface tension term τΓ =
γ(I−n̂⊗n̂)δΓ as a body force defined by

τ̃Γ(x)=
∫

R2
D(x−y)τΓ(y)dy. (4.23)

One choice for the kernel D is given by

D(x)=

{
(2d)−2(1+cos(πx/d))(1+cos(πy/d)), if |x|<d, |y|<d;
0, otherwise.

(4.24)

This was first introduced by Peskin [134]. In the examples reported below, d, the width
of the smoothing region, is taken to be twice the cell size. After being interpolated from
the interface to the grid points by (4.23), the total flux is conserved.

As before we use the projection method for the macroscale equation. The interface is
updated by forward Euler method:

(xΓ)n+1−(xΓ)n

∆t
=un. (4.25)

The interface is represented by a collection of discrete points {(xΓ)i,i=0,1,··· ,N}, where
the two end points (xΓ)0 and (xΓ)N are the contact points, i.e. the intersections of the
interface with the solid walls. Surface tension force is calculated at the middle of each
segment. Neumann condition on velocity is used at the in-flow and out-flow boundaries.
At the solid wall away from the contact point, no-slip boundary condition is used. Other
details of the macroscale solver can be found in [146].

Microscopic solver and estimating boundary conditions

The data that need to be estimated from MD are:

1. shear stress near the contact line (here the contact point);

2. velocity of the contact line.

The schematics of the molecular simulation around the contact line is shown in Fig. 17.
Periodic boundary conditions are imposed in the z-direction. In the x-direction, the flow
field is not necessarily periodic, so we enlarge the simulation box to G′H′C′D′ and impose
periodic boundary conditions on G′D′ and H′C′ instead (see the right panel in Fig. 17).
The enlarged part serves as a particle reservoir. In this system we have two species of flu-
ids, fluid I on the left and fluid II on the right. When a fluid particle of species II crosses
H′C′, it will enter the box through G′D′ and become species I, and vice versa.

In the y-direction, the particles are confined by the solid wall at G′H′ and a repulsive
force at C′D′. The repulsive force is modeled by the repulsive part of the LJ potential, as
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Figure 17: Schematic of the multiscale method for the contact line problem. Macro grid used in the computation
is represented by dotted lines in the left panel. MD is carried out in a local region around the contact line.
Periodic boundary conditions are imposed on the boundaries of the enlarged box G′D′ and H′C′. The dynamics
in the shaded strips GD, DC and CH are constrained by continuum velocity field. The shear stress and the
position of the contact point are computed in the strip along GH.

given in (4.20). The repulsive force is used to keep the particles from escaping the MD
domain. More detailed information on the microscale solver is given in [146].

For consistency between the molecular dynamics and the continuum dynamics, a
modified Andersen thermostat is used in the strips GD,DC, and CH: At Poisson dis-
tributed times with certain frequency ν, a random particle is selected from the strips and
its velocity is replaced by u(x)= uc(x)+ũ, where uc is the velocity from continuum dy-
namics and ũ is a random variable with Maxwell-Boltzmann distribution at the specified
temperature T.

The shear stress is calculated using the formula (4.7) in the bins which are a few (about
3) atomic lengths above the wall.

To estimate the position of the contact line, we first calculate the particle density func-
tion along the fluid-solid interface (remember O is fixed):

ρ(x)=∑
i

ρi δ(xi−x), (4.26)

where the sum is over all particles in the strip above the solid wall, xi is the x coordinate
of the i-th particle, ρi is 1 for particles of species I and -1 for particles of species II. The
position of the contact line is determined by ρ(x)=0. [146] suggests taking a strip which is
again a few atomic lengths above the wall and partition it into uniform bins in x direction.
Then the density is obtained by taking the sum of ρi in each bin. The position of the
contact line is given by

(xΓ)0 = x0+
∫ x1

x0

ρ̃(x)dx, (4.27)

where x0 and x1 are the positions of the leftmost and the rightmost bins respectively. ρ̃(x),
which is between 0 and 1, is the rescaled density:

ρ̃(x)=
ρ(x)−minx ρ(x)

maxx{ρ(x)−minx ρ(x)} . (4.28)
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Numerical results

The overall algorithm for a typical macro time step k looks like the following:

Step 1 Carry out a constrained MD simulation near the contact line, from which the
shear stress and the position of the contact line are estimated;

Step 2 Solve equations in (4.21) for uk+1 and (xΓ)
k+1.

We will discuss two examples from [146]. The first example is a validation study. The
second is an example of asymmetric fluid-solid interactions.

Example 4.1. Two immiscible fluids are confined in a channel and driven by an external
force f0=0.02 in the x direction. The system measures 69.7×22.5×5.16 and contains 2944
particles of each fluid and 1728 solid particles. The system is periodic in the x and z
directions.

To check the validity of the constrained molecular dynamics used in the hybrid meth-
od, a local MD simulation is performed around the contact line. The left panel of Fig. 18
shows the time series for the difference of the particle numbers of both species inside
GDCH (see Fig. 17). We clearly see a transient time during which the particles of species
I flow out of the box and particles of species II flow into the box. The right panel of
Fig. 18 is a comparison between the shear stress calculated on the surface of the solid
wall in the full MD simulation and in the local constrained MD simulation, and we see
good agreements.

The validation study was also carried out for the steady-state solution. The parame-
ters in the continuum model are ρ=0.81,µ=2.0 and γ=3.7. 70×20 grid points are used
in the spatial discretization, and the time step is ∆t = 0.05. A static configuration was
used as the initial data and the external force is slowly increased to 0.02. The steady-state
velocity field and the interface (dashed line) are shown in Fig. 19. These results agree
well with the full MD results.

Example 4.2. In our next example, we consider the case for which the fluid-solid inter-
action is different for the two fluid phases. Specifically the attraction between fluid I and
the solid is decreased by taking η =0.7 in the potential (4.8). All other parameters in the
potential are kept unchanged from the previous example. The static contact angle θ in
this case is 65◦.

Again the static configuration is used as the initial state and an external force f0(t)=
5.35×10−11t in x-direction is applied until it reaches f0 = 2.2×10−5. The force is then
decreased at the same rate until it reaches f0 =−7.0×10−5. The fluid-fluid interfaces at
different times are shown in Fig. 20(a) . The left-most dashed line is the interface at the
static position, and it travels in the stream-wise direction as the external force increases.
The right-most dashed line corresponds to f0=2.2×10−5. The solid lines from the right to
the left show the shapes of the interfaces as the external force decreases. Fig. 20(b) shows
the dynamic contact angle as a function of the applied force. Again, the dashed curve
corresponds to the dynamics as the force increases, and the solid curve corresponds to
the dynamics as the force decreases.
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Figure 18: Results of the constrained MD simulation. (a): The time series of ∆N=NI(t)−NI I(t), where NI(t)
and NI I(t) are the particle numbers of the two species in the box GDCH (see Fig. 17) respectively; (b):
The shear stress measured at the solid wall. The solid curve is calculated from the full MD simulation and the
dashed curve is from the constrained MD simulation.

While the numerical results appear to be quite reasonable and in some cases have
been validated by direct MD simulations, the coupling procedures, the way in which
constraints are imposed on the MD, are still quite ad hoc. This is a common problem for
coupled atomistic-continuum modeling of fluids: So far there has been little systematic
study on the accuracy of such coupling procedures. In comparison, more work has been
done on this issue for solids.

5 Dynamics of solids at finite temperature

Unlike fluids, the multiscale nature of solids is much more pronounced. On the model-
ing side, there is no analog of the Navier-Stokes equation as a fundamental macroscopic
model. On the physics side, solids often contain a hierarchy of structures and defects at
different scales [136]. These include point defects such as vacancies and impurities, dis-
locations and structures formed by dislocations, grain boundaries, and even cracks. As a
result, multiscale modeling has received more attention in solids than in fluids.

We will again focus our discussion on the situation when the macroscopic model is
continuum mechanics and the microscopic model is molecular dynamics. For the anal-
ysis of static properties of solids at zero temperature, in which case the mathematical
models reduce to minimization problems, the quasi-continuum method has had a great
deal of success [169]. Here we will discuss multiscale methods that handle the dynamics
of solids at finite temperature. This part of the presentation follows mainly [108].
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Figure 20: Dynamics of the contact line problem with asymmetric fluid-solid interactions. (a): Fluid-fluid
interfaces at different times. For dashed curves from left to right, the external force increases from 0 to
2.2×10−5; For solid curves from right to left, the external force decreases from 2.2×10−5 to −7.0×10−5; (b):

Dynamic contact angle as a function of external force. The external force is rescaled by F =8.1×10−6.

5.1 Macroscopic and microscopic models

Again the continuum model is expressed in terms of the conservation laws. For solids
it is more convenient to work with Lagrangian coordinates. Denote by x0 the reference
coordinate for the solid and x=x0 +u(x0,t), the position after deformation, with u being
the displacement. Then the conservation laws take the form:





∂tA−∇x0 v=0,
∂tv−∇x0 ·σ =0,
ρ0∂te+∇x0 ·j=0.

(5.1)
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Here A,v,e are the deformation gradient, velocity and total energy per particle respec-
tively, ρ0 is the initial density, σ is the first Piola-Kirchhoff stress tensor and j is the
energy flux. The first equation in (5.1) is a statement of compatibility between the de-
formation gradient and the velocity. The second and third equations are conservation of
momentum and energy respectively. In continuum mechanics [100], these equations are
supplemented by the empirical constitutive relations for stress and energy fluxes. Our
interest here is to develop multiscale strategies that bypass these empirical constitutive
laws when their accuracy is in doubt.

The microscopic model is again MD. The first step is to derive a set of conservation
laws similar to (5.1). For this purpose, we define the following empirical distributions
[108],





ρ̃(x0,t)=∑
i

miδ(x0−x0
i ),

ṽ(x0,t)=∑
i

vi(t)δ(x0−x0
i ),

q̃(x0,t)=∑
i

mivi(t)δ(x0−x0
i ),

ẽ(x0,t)=
1

2 ∑
i

[
mivi(t)2+∑

j 6=i

φ
(
xi(t)−xj(t)

)]
δ(x0−x0

i ).

(5.2)

Here as before we denote by x0
i the position of the i-th atom in the undeformed configu-

ration, xi(t) and vi(t) are respectively the position and velocity of the i-th atom at time t.
Let





σ̃αβ(x0,t)=−1

2 ∑
i 6=j

fα

(
xi(t)−xj(t)

)
(x0

iβ−x0
jβ)

×
∫ 1

0
δ
(
x0−(x0

j +λ(x0
i −x0

j ))
)
dλ,

j̃(x0,t)=
1

4 ∑
i 6=j

(
vi(t)+vj(t)

)
·f
(
xj(t)−xi(t)

)
(x0

i −x0
j )

×
∫ 1

0
δ
(
x0−(x0

j +λ(x0
i −x0

j ))
)
dλ,

(5.3)

where f =−∇V is the force and we have only considered two-body interaction in the
atomistic potential – extension to the general case can be found in [108]. We have

{
∂tq̃−∇x0 ·σ̃ =0,

ρ0∂t ẽ+∇x0 · j̃=0.
(5.4)

The expressions in (5.3) are nothing but the generalizations of the classical Irving-Kirkwood
formula.
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Figure 21: A schematic illustration of the numerical procedure: starting from piece-wise constant solutions
{wn

k }, one integrates (5.5) in time and in the cell [xk,xk+1]. To estimate f at xk, we perform a MD simulation
using wn

k as constraints.

5.2 Type B problem: Atomistic-based constitutive modeling

5.2.1 Macroscale solver

Our basic macroscopic model is a set of conservation laws. Therefore, as the macroscale
solver, we will choose a finite volume method. Although there are a variety of finite
volume methods available for solving conservation laws [80, 105], many of them involve
computing the Jacobian of the flux functions, which dramatically increases the computa-
tional complexity in a coupled multiscale method when the constitutive relation has to
be extracted from atomistic models. An exception is the central scheme of Lax-Friedrichs
type, such as the one developed in [122] which is formulated over a staggered-grid. Be-
low we will choose such central schemes as our macroscale solver.

For convenience, we will illustrate the case when the macroscale model is one-dimen-
sional. We rewrite the conservation laws in a generic form,

wt+fx =0, (5.5)

where w denotes the conserved quantities, and f is some (unknown) flux function. Fig. 21
shows the overall structure of the method. The first order central scheme represents the
solutions by piece-wise constants, which are the average values over each cell:

wn
k =

1

∆x

∫ xk+1/2

xk−1/2

w(x,tn)dx.
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Here ∆x is the size of the cell. Integrating (5.5) over [xk, xk+1]×[tn, tn+1) leads to the
following:

wn+1
k+1/2 =

wn
k +wn

k+1

2
− ∆t

∆x

(
fn

k+1−fn
k

)
, (5.6)

where

fn
k =

1

∆t

∫ tn+1

tn
f(xk,t)dt.

This is then approximated using numerical quadrature such as the mid-point formula. A
simple choice is fn

k ∼ f(xk,tn).
The overall procedure is as follows. At each macro time step, the scheme (5.6) requires

as input the fluxes at the grid points xk. These flux values are obtained by performing
local MD simulations that are constrained by the local macro state variables A, v, e. After
the MD system equilibrates, we estimate the fluxes by time/ensemble averaging.

Higher-order schemes and generalization to high dimensions are discussed in see
[108].

5.2.2 Constrained microscale solver

Next we discuss how to set up the MD in order to measure the fluxes. As for the case of
fluids, we will make a constitutive assumption that the fluxes depend only on the local
function values of the conserved densities. More general constitutive assumptions can be
accommodated, but the constrained MD that we discuss below will have to be modified.

First we initialize the MD. The basic requirement is that the initial condition has be
to consistent with the local conserved quantities of the macroscopic state, and has the
correct crystal structure. Given the values of the local macroscopic state variables A,v,e,
we first determine the shape of the MD cell from the deformation gradient tensor A.
Consider the situation that the crystal is a simple Bravais lattice and let E be a basis for
the undeformed unit cell. The deformed lattice is generated by the basis vectors Ẽ=AE.
We then place the atoms on the deformed lattice, possibly with small perturbations. The
potential energy U of this trial configuration and the kinetic energy associated with the
mean velocity v is subtracted from the total energy e to give us the thermal energy. If this
value is positive, the trial configuration is accepted. Otherwise, it is rejected. From the
thermal energy one computes the temperature. The velocities of the atoms are initialized
according to the Maxwell-Boltzmann distribution with the mean and variance given by
the macroscale velocity v and the temperature respectively.

Another idea is to use the previously computed microscopic state as the initial con-
figuration for the new MD simulation. Of course the previously computed microscopic
state has to be modified in order to be consistent with the current macro state. This can
be done as follows.

1. The configuration is deformed linearly so that it is consistent with the current de-
formation gradient.

2. The average velocity is shifted to the current average velocity.
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3. The temperature (and hence the fluctuating part of the velocity) is changed using
the same procedure as discussed above to arrive at the required total energy.

The choice of the size of the MD system is affected by two competing factors. On one
hand the size of the system has to be large enough in order to minimize the effect of the
boundary conditions. On the other hand, as the system size goes up, not only the cost
goes up, the relaxation time also goes up.

Boundary conditions have to be imposed on the microscopic system in order to guar-
antee consistency with the local macroscale variables. In the present case since the sys-
tem is homogeneous (constant mean velocity, temperature and deformation gradient),
the most convenient boundary condition is the periodic boundary condition. The MD is
performed in a deformed box as described earlier and periodically extended to the whole
space.

The periodic boundary condition excludes the possibility of accounting for inhomo-
geneous effects such as effects of thermal gradients, strain gradients, etc. Extending the
methodology to cover these effects is still on-going work.

From the MD data, we can compute the microscopic fluxes using the formulas in
(5.3). The final step is to average the microscopic fluxes to obtain the fluxes needed by
the macroscopic scheme. This is very similar to the situation for fluids and therefore we
will omit the details. The interested reader can consult [108].

We remark that this procedure allows us to automatically decouple the micro time
scales from the macro time scales.

An error analysis of the overall method can be found in [61].

5.2.3 Modeling thermal expansion using MD

As an example, we study the effect of thermal expansion in a crystal. Our atomistic model
is a 3D Lennard-Jones solid, on a FCC (face-centered cubic) lattice. We set up the example
so that the macroscale behavior is two dimensional. Initially the material is at rest with
homogeneous temperature distribution T≡0.1. We then increase the temperature in the
middle instantaneously to T = 0.4. This results in a thermal expansion that propagates
outward. The result of HMM is shown in Fig. 22 where we display the computed tem-
perature distribution as well as the velocity field on the macro grid. One clearly observes
that the material expands outward as heat is spread out.

5.3 Type A problem: Dealing with isolated defects

We now turn to another class of problems that can be treated using multiscale methods,
the problem of isolated defects. Solids often contain a variety of defects. To a large extent,
the structure and dynamics of these defects determine the properties of the solid [136].

A common idea for the multiscale modeling of defects is to use atomistic models
near defects and continuum models away from defects, e.g. in a domain decomposition
framework. MAAD is a good example of such an approach [5,6]. The HMM philosophy,
on the other hand, suggests a strategy that is closer to adaptive model refinement. One
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Figure 22: Thermal expansion: temperature distribution (left) and the velocity field (right). The macro mesh
consists of 36×36 grid points. Each MD cell contains 36×36×3×4 atoms, and the MD system is evolved for
104 time steps.

starts with a macroscale model on a macro-grid (which might be locally refined) in the
entire computational domain and couple with a more refined model locally near the de-
fects. For the present problem, the macroscale model is the same as before, namely the
conservation laws. The macroscale solver can also be chosen as before, i.e. central type
of finite volume schemes. But when it comes to computing the fluxes, the cells (more
precisely, the cell boundaries where flux evaluation is carried out) are divided into two
types: cells that contain defects and cells that do not contain defects. In cells that do not
contain defects we evaluate the fluxes using either empirical constitutive relations or the
method discussed in the previous section. In cells that do contain defects we compute
the fluxes using MD.

5.3.1 The relevant time scales

To formulate the procedure of coupling MD with the continuum models near defects, we
distinguish two different situations depending on relative magnitude between the time
scale for defect motion and the time scale for the local relaxation of the defect structure.
We denote the former by Td and the latter by Tr.

If Td is much larger than Tr, we can extend the macroscale model to include the ve-
locity of the defect. The macroscale scheme then contains two components: a solver for
the conservation laws (a central type finite volume scheme or discontinuous Galerkin
method) and defect tracking. The data to be measured from MD include the fluxes, the
defect velocity and the local environment variables of the defect. This procedure natu-
rally decouples the two time scales Tr and Td. The defect tracking procedure has been
demonstrated in [108] for co-dimension one defects, such as twin and grain boundaries.
Extending this procedure to dealing with high co-dimensional defects such as point de-
fects and dislocations still remains open.

If Td is comparable to Tr, then the time history of the defect is important for its future
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Figure 23: Schematic of the adaptive modeling refinement. The left figure shows the case where Tr ≪Td. The
MD simulations are carried out inside the black boxes. The dashed lines represents the interface. The right
figure shows the other case where Tr and Td are comparable. Here one has to keep track the local defect
structure for all time by MD simulation.

dynamics. There is no need to decouple the time scales since there is no time scale sepa-
ration. In this case re-initializing the defect structure at macro time steps, as is commonly
done under the framework of HMM, is no longer needed and is in general less accurate.
Instead, we should track the entire history of the local atomic structures near the defect.
This situation often arises when dealing with small-size materials.

Fig. 23 illustrates the procedure for both cases.

5.3.2 MD boundary conditions

Another difference with the type B problems discussed earlier is that the local MD sim-
ulations are no longer homogeneous. It then becomes highly non-trivial to impose the
constraints on the MD, which are typically done in the form of boundary conditions.
There are two main issues that need to be addressed as far as boundary conditions are
concerned. The first is the handling of the phonons. Atomistic and continuum models
represent phonons very differently. In atomistic models, phonons are represented in the
form of lattice waves. In continuum models, they are represented by the temperature
field. Ensuring consistency between these two vastly different representations is a highly
non-trivial problem. The second is the handling of defects. For example, dislocations
might be emitted during crack propagation, and the MD boundary conditions have to
have the ability to allow such dislocations to leave the computational domain smoothly.

There has been relatively little work done on the second problem. The closest related
work is that of Shilkrot, Curtin and Miller on CADD (continuum-atomistic dislocation
dynamics) [163, 164].

Much work has been done on the first problem, and a fairly complete picture has
emerged. We refer to [110, 184] for the details of this discussion.
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Figure 24: Cubic and tetragonal phases for Ni-Al alloys.

5.3.3 Twin boundary dynamics in Ni-Al alloy

To see how these ideas can be applied to a realistic problem, we summarize the results
of [108] for the example of twin boundary dynamics in a Ni62.5Al37.5 alloy. The atomistic
model uses the EAM potential developed by Voter and Chen [176], which is specifically
designed for Ni-Al alloys. At this percentage twin boundaries have been observed both
experimentally [31] and in atomistic simulations (with this EAM potential) [17]. In par-
ticular the EAM potential has predicted a tetragonal structure with three variants. The
corresponding strain matrices can be written as,

U1 =




η1 0 0
0 η2 0
0 0 η2


, U2 =




η2 0 0
0 η1 0
0 0 η2


, U3 =




η2 0 0
0 η2 0
0 0 η1


. (5.7)

The cubic structure with lattice constant a0 =2.871 Åis chosen as the reference configura-
tion. The parameters η1 and η2 can be thought of as being the stretch along the principal
axis illustrated in Fig. 24. The values of these parameters are obtained from MD simula-
tion: η1 =1.2263 and η2 =0.9061.

For convenience the material is arranged so that the twin plane coincides with the y-z
plane. The deformation corresponding to the undeformed variant I and variant II are:

A1 =




√
2η1η2√
η2

1+η2
2

0 0

η2
1−η2

2√
2(η2

1+η2
2)

√
η2

1+η2
2√

2
0

0 0 η2


, A2 =




√
2η1η2√
η2

1+η2
2

0 0

η2
2−η2

1√
2(η2

1+η2
2)

√
η2

1+η2
2√

2
0

0 0 η2


. (5.8)

The dynamics of the twin boundary is driven by a shear that is applied at the left
boundary. Away from the twin boundary, local MD simulations are performed to esti-
mate the stress as was done for type B problems. Each such simulation involves 20×20×5
atomic units and 2000 steps of time integration. Near the twin boundary the defect track-
ing technique is applied to estimate the moving speed of the twin boundary and the local
strain and stress. Each such MD calculation is carried over a system with 120×20×8
atomic units for 1200 time steps. In all the MD simulations the time step is taken to be
δt=0.003 ps. Since the twin boundary simply moves in the x direction, and the continuum
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Figure 25: Propagation of twin boundary under stress: shear stress is applied at the left boundary of the sample.
The initial positions of the atoms are plotted in light color. The positions after 1.2 ps are plotted in dark color.

quantities do not have appreciable change in the y direction, the continuum equations can
be simplified to





∂t A11−∂xv1 =0,
∂t A21−∂xv2 =0,
∂tv1+∂xσ11 =0,
∂tv2+∂xσ21 =0.

(5.9)

For simplicity the energy equation is neglected in this problem, and is replaced by con-
straining the system at constant temperature. Other components of A are assumed not to
change in time.

Fig. 27 shows the numerical results at the macroscale level after some macro time
steps. As the twin boundary propagates, two elastic waves are generated and move
away from the twin boundary.

To better understand the mechanism of twin boundary propagation, we plot in Fig. 25
some results from the local MD simulation at the twin boundary. We first select an ar-
bitrary plane of atoms and examine their positions at the initial and final times of the
MD. Different variants of the twin are easily identified as rectangular lattices with differ-
ent orientation. We see that at the end of the MD, the twin boundary has clearly moved
forward (in a layer by layer fashion).

Next we examine what happens on the twin plane as it propagates forward. For that
purpose we plot the atomic positions of the atoms on the twin plane. Fig. 26 clearly
suggests that the twin plane moves by a nucleation and propagation mechanism, very
much similar to the mechanism of epitaxial growth of crystals. New variants are first
nucleated and form islands on the twin plane. The edges of the islands then propagate
out and induce the transformation on the whole plane.
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Figure 26: Nucleation and propagation of new variant: ‘⊳’: atoms in the twin plane that are still in the original
variant. ‘⊲’: atoms that have transformed to the new variant. Circle atoms belong to the layer next to the twin
plane which are still in the original variant. They are used as reference atoms. Transformed atoms are closer to
circle atoms at the right, whereas untransformed atoms are close to circle atoms at the left.

6 Interface problems

In this section we discuss how the HMM philosophy can be applied to the study of inter-
face motion in a multi-scale setting. This discussion follows that of [35]. Our main interest
is to capture the macroscale dynamics of the interface in cases where the macroscale ve-
locity of the interface is not explicitly specified. Instead, it has to be extracted from an
underlying microscale model. Examples of such microscale models include:

1. Microscale interface dynamics with interfacial velocity of the form

Vn(x)= cǫ(x,γ), (6.1)

where γ denotes the microscale interface. A simple example of cε(x,γ) is

cε(x)= c
(

x,
x

ǫ
,γ
)

. (6.2)

Such models arise in the study of interface propagation in strongly heterogeneous
media such as composite materials, polycrystals, materials with impurities, and
porous media, to name a few. (6.2) is a homogenization problem. In the case when
the microstructure is periodic, homogenized equations have been derived in [111].
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Figure 27: Left: the initial data for A2,1 and v2 (100 m/s); Right: the numerical results in 15 macro time steps.

2. Front propagation in phase-field models. Consider, for example, the Allen-Cahn
equation

ut =ǫ∆u+
1

ǫ
u(1−u2). (6.3)

It is well-known that for small ǫ, (6.3) describes the propagation of a front whose
inward normal velocity is the mean curvature of the front. In this case, we simply
have to solve the mean curvature flow equation (instead of the microscale model
(6.3)) in order to capture the large scale dynamics of the front. However, if the phase
field model takes a more complex form or if non-trivial chemical reactions occur at
the front, analytically deriving the effective dynamic laws for the front becomes a
difficult task. Therefore it is of interest to develop numerical methods that capture
the large scale dynamics of the interface, and use only microscale models of the
type (6.3). Such ideas have been explored in the work of R. Klein et. al [155].

3. Discrete microscale models such as kinetic Monte Carlo algorithms or molecular
dynamics. Examples include the dynamics of step edges on the surface of an epi-
taxially grown crystal, grain boundaries in solids, and many more.
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6.1 Macroscale solver: The level set method

As the macroscale solver we may use any of the conventional methods for interface dy-
namics such as the level set method [127], front tracking [79], or the segment projection
method [173]. Here we will follow [35] and focus on the level set method. Alternative
approaches can be found in [168].

In the framework of the level set method, an interface is described as the zero level set
of a globally defined function, φ, called a level set function. All operations, in particular,
the evolution, are then performed on this function in place of the interface of interest.
The level set function φ satisfies the PDE:

φt+V ·∇φ=0,

where V is a globally defined velocity field. On the interface, this is equivalent to

φt±Vn|∇φ|=0, (6.4)

which involves the normal velocity only. In many problems, though, the velocity is only
naturally specified at the interface. Many techniques are available to extend the velocity
to the whole ambient space [7, 8, 87, 159].

6.2 Estimating the macroscale interface velocity

The data that need to be estimated from the microscale models are the normal velocities
of the macroscale interface at each macroscale grid point. The first step is to locally recon-
struct the interface. If the normal velocity of the macroscale interface is known to only
depend on the orientation of the local tangent plane of the interface, then we may approx-
imate the interface locally by a hyperplane. On the other hand, if the normal velocity is
also known to depend on the local curvature, a quadratic approximation is needed.

As an illustration, we first consider the homogenization problem. The level set repre-
sentation of the microscale model in this case takes the form

φt+c
(

x,
x

ǫ

)
|∇φ|=0, (6.5)

which describes motion in the normal direction at speed c. In this case, we can use the
hyperplane reconstruction. [35] suggests working on a transformed coordinate through
a change of variables so that this hyperplane coincides with the {xn = 0}-plane. The
original microscale model (6.5) is then solved in a domain ∆ in the transformed space,
rectangular with sides orthogonal to the coordinate axes, that should be larger than the
size of the periodic cell or the correlation length of c (see Fig. 28). Periodic boundary
conditions are imposed in the x1,x2,··· ,xn−1-directions and a periodic jump condition
can be imposed in the xn-direction.

To extract the quantity of interest, at each microscale time step, the microscale Hamil-
tonian is averaged in the central region ∆̃ of the domain to reduce spurious effects that
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Figure 28: A pictorial description of the HMM setup showing the link between the macroscopic and microscopic
levels.

may arise from the boundary and the chosen boundary conditions. Denote this value by
hǫ(t)

hε(t)=
1

|∆̃|

∫

∆̃
cε(x)|∇φ(x,t)|dx, (6.6)

the velocity of the front at the particular location is obtained from

Vn =
1

|∇φ|
∫ t∗

0
hǫ(t)K

(
t

t∗

)
dt. (6.7)

Here K is an averaging kernel, as discussed earlier. Having obtained Vn at all the macroscale
grid points at the interface, the interface can be evolved using standard procedures in the
level set method.

[35] also considered the case where the microscale model is described by a phase-field
equation:

ut =∇·
(

b
(

x,
x

ǫ

)
u
)
+ǫ∇·

(
a
(

x,
x

ǫ

)
∇u
)
− 1

ǫ

∂V

∂u
(u), (6.8)

where a(x,y)>0 and b(x,y) are smooth functions that are either periodic in y or stationary
random in y with rapidly decaying correlation at large distances and V is a double well
potential with minima at u = α,β. For the details concerning this example, as well as the
numerical results, we refer to [35]. More recent results are found in the thesis [167].

7 Stochastic ODEs with multiple time scales

Consider the following generic example of ODEs with two time scales:




Ẋǫ
t = f (Xǫ

t ,Yǫ
t ,ǫ), Xǫ

0 = x,

Ẏǫ
t =

1

ǫ
g(Xǫ

t ,Yǫ
t ,ǫ), Yǫ

0 =y.
(7.1)
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Here (x,y)∈Rn×Rm, f (·)∈Rn and g(·)∈Rm are (possibly random) functions that are
O(1) in ǫ, and ǫ is a small parameter representing the ratio of the time-scales in the
system. We have assumed that the phase space can be decomposed into slow degrees of
freedom x and fast ones y. Depending on the problem, we may be interested in the O(1)
(advective) or O(ǫ−1) (diffusive) time-scales.

There has been numerous analytical work on systems of the type (7.1) [74,98,115,128].
On the advective time-scale, if the dynamics for Yǫ

t with Xǫ
t = x fixed has an invariant

probability measure µǫ
x(dy) and the following limit exists:

f̄ (x)= lim
ǫ→0

∫

Rm
f (x,y,ǫ)µǫ

x(dy), (7.2)

then in the limit as ǫ→0, Xǫ
t converges to the solution of

˙̄Xt = f̄ (X̄t), X̄0 = x. (7.3)

Leading order optimal prediction of Chorin et al. applied to this problem gives the
same result [41, 42]. On the diffusive time-scale, fluctuations become important. With
the rescaled time s=ǫt, (7.1) becomes:





Ẋǫ
s =

1

ǫ
f (Xǫ

s ,Yǫ
s ,ǫ), Xǫ

0 = x,

Ẏǫ
s =

1

ǫ2
g(Xǫ

s ,Yǫ
s ,ǫ), Yǫ

0 =y.

(7.4)

Under appropriate assumptions on f and g, the effective dynamics for Xǫ
s in the limit of

ǫ→0 is a stochastic differential equation,

˙̄Xs = b̄(X̄s)+σ̄(X̄s)Ẇs, X̄0 = x, (7.5)

where Ws is a Wiener process and the coefficients b̄ and σ̄ are expressed in terms of limits
of expectations similar to (7.2). Details can be found in [63]. We will only discuss the
dynamics over the advective time scale, and refer to [63] for discussions on the diffusive
time scale.

In order to facilitate the discussion that we will present later on error analysis, we
consider a more special form of stochastic ODEs:





Ẋǫ
t = a(Xǫ

t ,Yǫ
t ,ε), Xǫ

0 = x,

Ẏǫ
t =

1

ǫ
b(Xǫ

t ,Yǫ
t ,ε)+

1√
ǫ

σ(Xǫ
t ,Yǫ

t ,ε)Ẇt, Yǫ
0 =y,

(7.6)

where a∈Rn, b∈Rm, σ∈Rm×Rd are deterministic functions and Wt is a d-dimensional
standard Wiener process.

Based on the assumption that for small ε, the dynamics of Xε
t is approximated by that

of
˙̄Xt = ā(X̄t), X̄0 = x, (7.7)
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an HMM type of strategy was independently proposed in [175]. The basic idea is to solve
(7.7) with a macro-solver in which ā is estimated by solving the micro-scale problem (7.6).

As the macroscale solver we may use any stable explicit ODE solver such as the for-
ward Euler, Runge-Kutta, or a linear multi-step method. In the simplest case when for-
ward Euler is selected as the macro-solver, we have

Xn+1 =Xn+ ãn∆t, (7.8)

where ∆t is the macro time step size.
The data that need to be estimated is ãn which is an approximation of ā(Xn). We

estimate this data in two steps:

1. We solve the second equation in (7.6) using a micro-solver for stochastic ODEs and
denote the solution by {Yn,m} where m labels the micro-time-steps. Multiple in-
dependent replicas can be used, in which case we denote the solutions by {Yn,m,j}
where j is the replica number.

2. We then define an approximation of ā(Xn) by the following time and ensemble
average:

ãn =
1

MN

M

∑
j=1

nT+N−1

∑
m=nT

a(Xn ,Yn,m,j,ε),

where M is the number of replicas, N is the number of steps in the time averaging,
and nT is the number of time steps we skip to eliminate transients.

For the micro-solver, for each realization we may use the following first order scheme

Yi
n,m+1 = Yi

n,m+
1√

ε
∑

j

σij(Xn,Yn,m,ε)ξ
j
m+1

√
δt

+
1

ε
bi(Xn,Yn,m,ε)δt+

1

ε ∑
jk

Aijk(Xn,Yn,m,ε)s
kj
m+1δt, (7.9)

where δt is the micro-time-step size (note that it only appears in term of the ratio δt/ε=:
∆τ), and

Aijk =∑
l

(∂lσij)σlk. (7.10)

Here the derivatives are taken with respect to y. The random variables {ξ
j
m} are i.i.d

Gaussian with mean zero and variance one, and

s
kj
m =





1
2 ξk

mξ
j
m+z

kj
m, k< j,

1
2 ξk

mξ
j
m−z

jk
m, k> j,

1
2

(
(ξ

j
m)2−1

)
, k= j,
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Figure 29: The comparison between X̄n and Xn produced by the multiscale scheme with p=4 (black curves).
Also shown is the fast process Yn,nT+N used in the micro-solver (grey curve).

where {z
kj
m} are i.i.d with P{z

kj
m = 1/2}= P{z

kj
m =−1/2}= 1/2. High order schemes are

discussed in [63]. For the initial condition, we take Y0,0 =0 and

Yn,0 =Yn−1,nT+N−1, (7.11)

i.e. the initial values for the micro variables at macro-time-step n are chosen to be their
final values from macro-time-step n−1. This choice of initial condition is not necessary
for the convergence of the scheme, e.g.

Yn,0 =0 (7.12)

would work as well, but it improves the convergence properties, as we will discuss in
Section 9.2.3.

As an illustration, consider the following example with (x,y)∈R2:




Ẋt =−Yt−Y3
t +cos(πt)+sin(

√
2πt), X0 = x,

Ẏt =−1

ǫ
(Yt+Y3

t −Xt)+
1√
ǫ

Ẇt, Y0 =y.
(7.13)

From (7.7) the effective equation for X̄t is

˙̄Xt =−X̄t+cos(πt)+sin(
√

2πt), X̄0 = x. (7.14)

We choose the following numerical parameters:

(T0,∆t,δt/ε,nT ,M,N)=(6, 0.01, 0.01×2−p, 100, 1, 10×23p). (7.15)

The results for p=2 is shown in Fig. 29, and compared with the solution of the effective
equation for X̄t.
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8 Exploring statistical self-similarity: An example without scale

separation

8.1 General strategy for data estimation

In the problems discussed above, scale separation was very important for the efficiency
of HMM: It allows us to choose small microscale simulation domain and still retain suf-
ficient accuracy for the estimated data. It is important to realize that this is not the only
situation for which HMM works efficiently. The underlying philosophy is more general
and it works as follows. Suppose that the size of the macroscale mesh is H. We need to
estimate some effective data such as transport coefficients at that scale, which is a func-
tion of H. Let us denote by f = f (L) the value of that data at the scale L. If there is scale
separation in the system, then f (L) is essentially independent of L:

f (L)≈Const (8.1)

as long as L is much larger than some characteristic scale of the microscopic model, which
might just be the correlation length. This allows us to take advantage of the scale sep-
aration by choosing the size of the microscale simulation domain, δ, to be much larger
than the microscopic scale, but still much smaller than H. However, so long as the scale
dependence of f = f (L) is of a simple form with only few parameters, we can make use
of this simple relationship by performing a few (not just one as was done for problems
with scale separation) small scale simulations and use the results to predict the needed
quantities at a much larger scale. One example of such a situation is when the system
exhibits local self-similarity. In this case the dependence in (8.1) is of the form

f (L)=C0Lβ

with only two parameters. Therefore we can use results of microscopic simulations at
two different scales to predict the result at a much larger scale, namely H.

This is a poor-man’s version of the renormalization group method. Other examples
of numerical methods that use renormalization ideas are found in [37, 38].

8.2 Transport on a percolation network at criticality

This idea was demonstrated in [66] on the example of effective transport on a two-
dimensional bond percolation network at the percolation threshold.

In the standard two dimensional bond percolation model with parameter p, 0≤ p≤1,
we start with a square lattice, each bond of the lattice is either kept with probability
p or deleted with probability 1−p. Of particular interest is the size of the percolation
clusters formed by the remaining bonds in the network (see Fig. 30 for a sample of bond
percolation). The critical value for this model is at p = p∗ = 0.5. For an infinite lattice, if
p < p∗, the probability of having infinite size clusters is zero. For p > p∗, the probability
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Figure 30: Bond percolation network on a square lattice at p=0.5.

of having infinite size clusters is 1. Given the parameter value p, the network has a
characteristic length scale – the correlation length, denoted by ξp. As p→ p∗ , ξp diverges
as

ξp∼|p−p∗ |α, (8.2)

where α =−4/3 (see [152]). At p = p∗, ξp = ∞. In this case, the system has a continuum
distribution of scales, i.e. it has clusters of all sizes. In the following we will consider the
case when p= p∗.

We are interested in macroscopic transport on such a network. To study transport,
say of some pollutants whose concentration density will be denoted by c, we embed
this percolation model into a domain Ω in R2. We denote by ε the bond length of the
percolation model, and L the length scale for the domain Ω. We will consider the case
when ε/L is very small.

The basic microscopic model is that of mass conservation. Denote by Si,j,i, j=1,··· ,N
the (i, j)-th site of the percolation network, and ci,j the concentration at that site. Define
the fluxes

the flux from right f r
i,j = Bx

i,j(ci+1,j−ci,j),

the flux from left f l
i,j = Bx

i−1,j(ci−1,j−ci,j),

the flux from top f t
i,j = B

y
i,j(ci,j+1−ci,j),

the flux from bottom f b
i,j = B

y
i,j−1(ci,j−1−ci,j).

Here the various B’s are the bond conductivities for the specified bonds. The bond con-
ductivity is zero if the corresponding bond is deleted, and 1 if the bond is retained. At
each site Si,j, from mass conservation, we have

f t
i,j+ f b

i,j+ f r
i,j+ f l

i,j =0, (8.3)
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i.e. the total flux to this site is zero. This will be our microscale model.
For the macroscale solver, we choose a finite volume scheme over a macroscale grid

ΩH where H is the size of the finite volume cell (see Fig. 3). The data that need to be
estimated from the microscale model, here the percolation model, are the fluxes at the
mid-points of cell boundaries. Since the present problem is linear, we only need to es-
timate the effective conductivity for a network of size H. We note that at p = p∗, the
effective conductivity is strongly size-dependent. In fact there are strong evidences that
the following relation holds [89]:

κL =C0Lβ, (8.4)

where κL is the mean effective conductivity at size L. This is confirmed in Fig. 31 where
we show a log-log plot of the effective conductivity as a function of scale.

Our basic strategy is to make use of such a relation to estimate the effective fluxes in
the case when ε≪H. For this purpose, we perform a series of local microscopic simula-
tions on systems of size L1 and L2 where ε≪ L1 < L2 ≪H. From the results we estimate
κL1

and κL2
. We then use these results to estimate the parameter values C0,β in (8.4). Once

we have these parameters, we can use (8.4) to predict κH.
One interesting question is the effect of statistical fluctuations. To see this we plot

in Fig. 32 the actual and predicted (using self-similarity) values of the conductivity on a
sub-lattice of size L = 128 for a number of realizations of the percolation network. The
predicted values are computed using simulated values from sub-lattices with L=16 and
L = 32. The predicted values have obviously larger fluctuations than the actual values,
implying that the fluctuations are amplified in the process of predicting the mean values.
Nevertheless the mean values are predicted with reasonable accuracy, considering the
relatively small size of the network.

More numerical results, including some results of the multiscale method, can be
found in [66].

9 Error analysis

Error analysis for multiscale methods presents a new challenge to numerical analysis,
particularly for problems involving multi-physics. Since multiscale methods are rela-
tively new, and their errors typically involve several different contributions, rigorous
results on error control are very much desired in order to help understanding basic is-
sues such as stability and accuracy of multiscale methods. Indeed, to be able to develop
a general strategy for error analysis was one of the main motivations for developing the
HMM framework.

To begin with, what should we take as the exact or reference solution, to be compared
with the numerical solution of a multiscale method? In general, we should not take the
detailed solution of the microscopic problem as the reference solution, since approximat-
ing that would usually require solving the full microscopic problem, and therefore defeat
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the whole purpose. For type B problems, we can take the reference solution as the so-
lution to the underlying macroscopic model, which we assume exist. Even though the
details of the macroscopic model are not used in the numerical algorithm, the model can
still be used for conceptual and analytical purposes. If we denote by u the solution to the
microscopic model, U0 the solution to the effective macroscale model, and Q the compres-
sion operator that maps the microscopic state to the macroscopic state, then by definition,
U0−Qu should be small. Therefore we can also take Qu as the reference solution. This is
preferred since it comes directly out of the microscopic solution.

These issues have not been discussed much for other types of problems.

Since error analysis is much better understood for type B problems, we will focus our
attention to this type of problems. The overall strategy is as follows. We first prove a
general statement that if some underlying macroscopic scheme is stable, then the error
in the HMM solution is bounded by the sum of two terms: The first is a standard error
for the macroscopic solver; the second, sometimes denoted by e(HMM), is a new term
due to the errors in estimating the data. We then estimate this new term. The first step is
usually quite general. Specific estimates in the second step are only obtained for specific
models.
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9.1 Error analysis of the HMM-FEM

Our first example is the HMM finite element method discussed earlier. We will always
assume that aε(x) is smooth, symmetric and uniformly elliptic:

λI≤ aε ≤ΛI (9.1)

for some λ,Λ>0 which are independent of ε. We will assume that the quadrature formula
used in (3.3) is exact for polynomials of degree 2k−2 for k>1 and k for k=1.

We will use standard notions for Sobolev spaces: ‖·‖1 and ‖·‖0 denote H1 and L2

norms respectively, and ‖·‖1,∞ denotes the W1,∞ norm.
As the first step, we will compare the HMM solution to the solutions of a macroscale

model of the form:
{
−div

(
A(x)∇U0(x)

)
= f (x), x∈D,

U0(x)=0, x∈∂D.
(9.2)

The following results are proved in [65].

Theorem 9.1. Denote by U0 and UHMM the solution of (9.2) and the HMM solution, respec-
tively. Let

e(HMM)= max
xℓ∈K
K∈TH

‖A(xℓ)−AH(xℓ)‖,

where ‖·‖ is the Euclidean norm. If U0 is sufficiently smooth, then there exists a constant C
independent of ε,δ and H, such that

‖U0−UHMM‖1≤C
(

Hk+e(HMM)
)
, (9.3)

‖U0−UHMM‖0≤C
(

Hk+1+e(HMM)
)
. (9.4)

In addition, there exit constants C0 and H0 such that if e(HMM)|lnH|<C0, then for all H≤H0,

‖U0−UHMM‖1,∞ ≤C
(

Hk+e(HMM)
)
|lnH|. (9.5)

So far no assumption on the form of aε(x) or A(x) is necessary. U0 can be the solution
of an arbitrary macroscopic equation with the same right-hand side as in (2.17). Of course
for UHMM to converge to U0, i.e., e(HMM)→0, U0 must be chosen as the solution of the
homogenized equation, which we now assume exists. To obtain quantitative estimates
on e(HMM), we must restrict ourselves to more specific situations.

The simplest example of such a specific problem is when

aε(x)= a
(

x,
x

ε

)
, (9.6)

where a(x,y) is either periodic in y, in which case we assume the period to be I =
[−1/2,1/2]d , or random but stationary under shifts in y, for each fixed x ∈ D. In both
cases, it has been shown that [18, 129]

‖uε(x)−U0(x)‖0 →0, (9.7)
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where U0(x) is the solution of the homogenized equation. The homogenized equation
takes the form of (9.2) with coefficients computed from solving the cell problems [18,129].

For the following results we assume that the periodic boundary condition is used for
the microscale problems in HMM.

Theorem 9.2. For the periodic homogenization problem, we have

e(HMM)≤





Cε, if Iδ(xℓ)=xℓ+εI,

C
( ε

δ
+δ
)

, otherwise.

The difference between the two results lies in the choice of Iδ(xℓ). For the second
result we do not need to assume that the period of a(x,·) is a cube: In fact it can be of
arbitrary shape as long as its translations tile up the whole space.

Another important case for which specific estimates on e(HMM) have been obtained
is the random homogenization problem. However the results for this case are less sat-
isfactory. The following result was proved in [65] following the work of [189]. Here we
assume for simplicity that the coefficient a(x,y,ω) is independent of x.

Theorem 9.3. For the random homogenization problem, assuming that a mixing condition holds.
We have

Ee(HMM)≤





C(κ)
( ε

δ

)κ
, d=3,

remains open, d=2,

C
( ε

δ

)1/2
, d=1,

where

κ =
6−12γ

25−8γ
,

for any 0 < γ < 1/2. By choosing γ small, κ can be arbitrarily close to 6/25. Here E denotes
expectation with respect to the probability space for the random coefficients.

The proper probabilistic set-up is discussed in [129]. The mixing condition is stated
in [65]. Roughly speaking it says that the correlation of the random coefficients a(y,ω)
decays exponentially fast at large distances.

UHMM by itself does not give any information on the gradients of uε which is im-
portant for many applications since it is related to physically important quantities such
as stress in the elastic problem and velocity in the porous medium problem. This in-
formation can be recovered using a simple post-processing technique. For the general
case, having UHMM, one can obtain locally the microstructural information using an idea
in [126]. Assume that we are interested in recovering uε and ∇uε only in the subdomain
Ω⊂D. Consider the following auxiliary problem:

{
−div

(
aε(x)∇ũε(x)

)
= f (x), x∈Ωη ,

ũε(x)=UHMM(x), x∈∂Ωη ,
(9.8)
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where Ωη satisfies Ω ⊂ Ωη ⊂ D and dist(∂Ω,∂Ωη) = η. We then have: There exists a
constant C such that

(∫
−

Ω
|∇(uε−ũε)|2x

)1/2
≤ C

η
‖uε−UHMM‖L∞(Ωη). (9.9)

There is a much simpler procedure for the periodic homogenization problem [55].
Consider the case when k=1 and choose Iδ =xK+εI, where xK is the barycenter of K. We
also assume that the quadrature point in the element K is at xK. Define ũε by:

1. ũε|Iδ
= vε

K, where vε
K is the solution of (3.4) with the boundary condition that vε

K−
UHMM is periodic with period εI and

∫
Iδ
(ũε−UHMM)(x)dx=0.

2.
(
ũε−UHMM

)
|K is periodic with period εI.

We then have [65]

Theorem 9.4. Let ũε be defined as above. Then

(
∑

K∈TH

‖∇(uε−ũε)‖2
0,K

)1/2
≤C

(√
ε+H

)
. (9.10)

Similar results are also proved for nonlinear elliptic problems. For details, see [65].

[188] presents systematic numerical studies on the effect of the boundary conditions
for the microscale problems as well as the microscale cell size.

9.2 Dynamic problems

The main strategy proposed in [56] is to compare the HMM solution with that of an un-
derlying macroscale solver, or an effective macroscale method. The basic result, proved
in [56], is that if this effective macroscale method is stable and k-th order accurate, then

||UHMM−U0||≤ ||UHMM−ŪH||+||ŪH−U0||≤C(e(HMM)+(∆t)k), (9.11)

where U0 is the solution of the macroscale model, e(HMM) is the error in the esti-
mated effective force. In proving (9.11), it is assumed that both HMM and the effective
macroscale method are expressed in the form:

Un+1 =Un+∆tFε(U), (9.12)

Ūn+1 = Ūn+∆tF̄(Ū), (9.13)

and e(HMM) is defined as

e(HMM)=max
U

‖F̄(U)−Fε(U)‖. (9.14)
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We also have:

||Quε−UHMM||≤ ||Quε−U0||+||ŪH−U0||+||UHMM−ŪH||. (9.15)

Here the first term on the right-hand side is due to the error in the effective model; the
second term is due to the error in the macroscale solver; the third term is the HMM
error. Denote by ε the parameter that characterizes the small scale in the problem. (9.15)
suggests an estimate of the type:

||Quε−U0||≤C(εα+(∆t)k +e(HMM)). (9.16)

We now apply this general result to some concrete examples.

9.2.1 ODEs with multiple time scales

The problems and algorithms were discussed in Section 2.2.1. If we apply the general
principles discussed above, we get:

Theorem 9.5. HMM is stable if the macroscale solver is stable. Moreover for any given constant
T there exists a constant C such that

|En|≤C((∆t)k +e(HMM))

if n∆t≤T, where En is the error between the HMM solution and the slow component of the exact
solution (a precise definition is given below), k is the order of the macroscale solver, e(HMM) is
the error in the estimation of the macroscale data.

Next we estimate e(HMM). This depends on a number of important factors in HMM,
in particular the filter K. We first discuss the case of dissipative systems and consider
for simplicity the example in (2.4). We will further assume that f and g are smooth and
bounded, and that {Zn,0} is bounded.

In the limit as ε→ 0, one expects that x will be close to f (y), and hence the effective
dynamics for the slow variable y is given by

˙̄y= g( f (ȳ),ȳ)=G(ȳ). (9.17)

In fact, we can easily prove the following: If we denote by (xε,yε) the solution of (2.4) and
if yε(0)= ȳ(0), then

|yε(t)−y0(t)|≤C1exp

(
− t

ε

)
+C2ε.

Let us first consider the case when the macroscale solver is forward Euler. In this case we
can express HMM as:

yn+1 =yn +∆tg̃(yn).
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Let En =yn−y0(tn), where tn =n∆t, for n∆t≤T. We have

En+1−En

∆t
= g̃(yn)−G(y0(tn))+O(∆t)

=G(yn)−G(y0(tn))+ g̃(yn)−G(yn)+O(∆t)

=G′(y0(tn)+θEn)En+ g̃(yn)−G(yn)+O(∆t).

If we let L=max|G′(y)|, then we get

|En|≤ eLt(C∆t+ max
n∆t≤T

|g̃(yn)−G(yn)|),

where C=maxt≤T |y′′0 (t)|. Here the first term on the right-hand side is the standard trun-
cation error at the macroscale. The second term |g̃(yn)−G(yn)| is what we usually call
e(HMM). With (2.10), it is a simple matter to prove [53]:

e(HMM)≤C
(

∆t+|1−δt/ε|N
)

. (9.18)

In the general case when k-th order stable macroscale solvers are used, we have [53]:

Theorem 9.6. Assume that the macroscale solver is k-th order accurate and stable, i.e. for linear
multi-step methods the root condition is satisfied. Let A(λδt) be the amplification factor of the
microscale solver for the ODE ẏ =−λy. Then there exists a constant C, independent of ∆t,ε,δt
and N, such that, for n∆t≤T,

|En|≤C
(

∆tk +|A(δt/ε)|N
)

.

Next we consider the oscillatory case. As before we will discuss a simple and yet
canonical example, namely (2.5). The dynamics for the slow variable I obeys the equation

˙̄I =
1

2π

∫ 2π

0
g(ϕ, Ī)dϕ=G( Ī). (9.19)

See for example [11]. We will assume that ω(I) never vanishes:

ω(I)≥ω0 >0. (9.20)

We will restrict ourselves to the situation when the weights {Km,N} are of the form

Km,N =K0

(
1− m

N

)
(9.21)

for m=0,1,.. .,N, where K0 is a filtering kernel.
A crucial component in the analysis in this case is the effect of the kernel K0. This is

examined in detail in [69]. Consider an example for which the microscopic data takes the
form:

f ε(t)= f0(t)+ f1

(
t

ε

)
,
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where f1(τ) is periodic in τ with period 1. The macroscale component of { f ε(t)} is

F(t)= f0(t)+
∫ 1

0
f1(τ)dτ.

The macroscale data of interest is F0 = F(0). Assume that the F-estimator has the form

F̃0 =
1

T

∫ T

0
K0

(
1− τ

T

)
f ε(τ)dτ.

Then we have:

Lemma 9.1. Assume that K0 satisfies the following conditions

1. (A1). Moment condition

∫ 1

0
K0(τ)dτ =1,

∫ 1

0
(1−τ)αK0(τ)dτ =0

for α=1,2,.. .ℓ−1.

2. (A2). Regularity condition

K
(α)
0 (0)=K

(α)
0 (1)=0

for α=0,1,.. . ,q−1 and
∫ 1

0
|K(α)

0 (τ)|ατ <+∞

for α=0,1,.. . ,q.

Then

|F0− F̃0|≤C
(

Tℓ+
( ε

T

)q)
.

Using this result, we obtain:

Theorem 9.7. Under the same assumption as before, we have

|En|≤C

(
(∆t)k +

(
δt

ε

)r

+
( ε

Nδt

)q
)

,

where r=min(l,p) and p is the order of the microscale solver.

As expected, the size of δt should be chosen to resolve the small time scale ε, and N
should be large enough so that Nδt is larger than ε in order to sample adequately the
dynamics at the small scale.
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9.2.2 The effect of the fast variable reinitialization

The error estimates given in the last subsection were for the general case when the ini-
tialization of the fast variables in the microscale solver is quite arbitrary. Suitable reini-
tialization of the fast variables at each macro-time-step may result in significant gain in
efficiency. Precise estimates are given below for the case of stochastic ODEs, but it is
useful to first illustrate the influence of fast variables initialization on a simple example
(2.4).

Suppose that the initial condition for (2.9) is taken to be xn,0=0. Then N must be taken
large enough so that (2.9) has converged to sufficient accuracy, i.e. xn,N ≈ f (yn), and the
error estimate for e(HMM) is given in (9.18).

Suppose on the contrary that we take xn,0 = xn−1,N. Then it can be shown that the
error estimate improves to

e(HMM)≤C

(
∆t+

ε∆t

Nδt
+∆t

∣∣∣∣1−
δt

ε

∣∣∣∣
N
)

, (9.22)

which indicates, in particular, that the scheme converges as ∆t,δt → 0 provided that
ε∆t/Nδt → 0. Notice that this can happen even if N = 1. Notice also that accuracy re-
quires that

ε∆t/Nδt≪1,

whereas gaining in efficiency in the sense of (1.1) requires

∆t/Nδt≫1.

For small ε both constraints can be satisfied at the same time.
The simplest way to justify (9.22) is to re-write (2.9) as

xn,m+1 = xn,m− 1

γ

∆t

N
(xn,m− f (yn)), (9.23)

where

γ=
ε∆t

Nδt
. (9.24)

It is easy to see that in the limit as δt, ∆t→0 with γ kept fixed, HMM is consistent with
the modified equation 




ẋ=− 1

γ
(x− f (y)),

ẏ= g(x,y).
(9.25)

If γ≫ε, this equation is less stiff than (2.4) and correspondingly HMM gains in efficiency
over a direct scheme for (2.4). On the other hand, for ε≪ 1 it is possible to also satisfy
1≫γ≫ ε. In this case, the y component of the solutions of (2.4) and (9.25) remains close
because of the existence of a limiting dynamics. But the choice of γ is now dictated by
the error tolerance and not by the value of ε in the original equation.
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9.2.3 Stochastic ODEs with multiple time scales

Here we discuss some of the results proved in [63] for stochastic ODEs. The algorithms
were described in Section 7. Again we will focus on the case of advective time scale.
Diffusion time scale was considered in [63].

We will make the following assumptions:

1. The coefficients a, b and σ, viewed as functions of (x,y,ε), are in C∞
b , a and σ are

bounded. Here C∞
b is the space of smooth functions with bounded derivatives of

any order.

2. There exists an α>0 such that ∀ (x,y,ε),

|σT(x,y,ε)y|2 ≥α|y|2.

3. There exists a β>0 such that ∀ (x,y1,y2,ε),

〈(y1−y2),(b(x,y1,ε)−b(x,y2,ε))〉+‖σ(x,y1,ε)−σ(x,y2,ε)‖2 ≤−β|y1−y2|2,

where ‖·‖ denotes the Frobenius norm.

Under these assumptions, we have:

Theorem 9.8. Assume that the macro solver is stable and k-th order accurate for (7.7). Then for
any T0 >0, there exists a constant C>0, independent of (ǫ, ∆t, δt, nT, M, N), such that

sup
n≤T0/∆t

E|Xǫ
tn
−Xn|≤C

(
√

ǫ+(∆t)k +eD

)
, (9.26)

where tn =n∆t, and

eD =(δt/ε)ℓ+
e−

1
2 βnT(δt/ε)

√
N(δt/ε)+1

(R+
√

R)+

√
∆t√

M(N(δt/ε)+1)
. (9.27)

Here ℓ is the weak order of the micro solver,

R=
∆t

1−e−
1
2 β(nT+N−1)(δt/ε)

, (9.28)

if the fast variable is initialized as in (7.11) and R=1 if the fast variable is initialized as in (7.12).

The basic idea for proving this result is as follows. The error |Xǫ
tn
−Xn| in (9.26) is

decomposed into three parts:

1. |Xǫ
t −X̄t|, where X̄t is the solution of the effective equation (7.7).

2. |X̄tn−X̄n|, where X̄n is the approximation of X̄tn given by the selected macro solver
assuming that ā(x) is known.

3. |X̄n−Xn|.
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The first part is the error in the averaging principle itself. As shown in [63], we have

sup
0≤t≤T0

E|Xǫ
t −X̄t|≤C

√
ǫ.

This is the first term in (9.26). The second part is a standard ODE estimate:

sup
n≤T0/∆t

|X̄tn −X̄n|≤C(∆t)k. (9.29)

This is the second term in (9.26). The third part, eD, accounts for the error caused by
using ãn instead of ā(Xn) in the macro solver. Here the term (δt/ε)ℓ is due to the micro-
time discretization which induces a difference between the invariant measures of the
continuous and discrete dynamical systems. The term

e−
1
2 βnT(δt/ε)

√
N(δt/ε)+1

(R+
√

R)

accounts for the errors caused by relaxation of the fast variables. The factor R reflects
the influence of the particular initialization procedure used for the fast variables at each
macro time step. Different initialization leads to similar estimates but with different val-
ues of R. For example if we use Yn,0 =0, then R=1. Finally, the term

√
∆t√

M(N(δt/ε)+1)

accounts for the sampling errors after the fast variable reaches local equilibrium. This is
a central limit theorem type of estimate.

The estimate (9.26) suggests a somewhat surprising fact, namely that the HMM scheme
converges as ∆t→ 0, δt→ 0 on any sequence such that R→ 0, even if we take only one
realization and one micro time step per macro time step, M=1, nT =1, N =1. In this case
R=∆t/(δt/ε) to leading order. This is the consequence of the particular re-initialization
procedure that we have adopted (see (7.11)), and it is a manifestation of the point made
in the last subsection.

We now discuss how these results play out in actual computations. We will adopt the
more accurate initialization procedure for the fast variable. When

Nm(δt/ε)=(nT +N−1)(δt/ε)>1,

we have R=∆t plus higher order terms, and

sup
n≤T0/∆t

E|Xn−X̄n|≤C

(
(δt/ε)ℓ+

e−
1
2 βnT(δt/ε)

√
∆t√

N(δt/ε)+1
+

√
∆t√

M(N(δt/ε)+1)

)
. (9.30)
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Figure 33: The error Eℓ
p = (∆t/T0)∑n≤⌊T0/∆t⌋ |X̃n−X̄n| as a function of p when ℓ = 1 (circles) and ℓ = 2

(squares). Also shown is the predicted estimated, 0.1×2−p (dashed line).

Table 3: The computed values for the error Eℓ
p.

p=0 p=1 p=2 p=3 p=4 p=5 p=6 p=7

ℓ=1 .058 .070 .032 .019 .0096 .0067 .0025 .00076

ℓ=2 .045 .059 .022 .021 .0098 .0064 .0033 .0014

Here ∆t is taken as a fixed parameter. Suppose that we want to bound the error by O(2−p)
for p=0,1,.. . and assume that M=1. Then as in [63], we find that the optimal parameters
are

δt/ε=O(2−p/ℓ), nT =O(1), N =O(2p(2+1/ℓ)),

which gives

cost =
nT +N−1

∆t
=O(2p(2+1/ℓ))

independent of ε. The magnitudes of the errors for various p and ℓ=1,2 are listed in the
following table and shown in Fig. 33. As predicted, we the error scales as Eℓp =O(2−ℓp).

9.2.4 Other examples

We briefly mention a few other examples that have been analyzed. The parabolic homog-
enization problem has been analyzed in [3, 55, 120]. The structure of the analysis is very
similar to the examples discussed here. In particular, [120] gives results that are similar
to the ones discussed here for the elliptic homogenization problem. Error analysis and
careful numerical studies for the hyperbolic homogenization problem were presented
in [33, 34].

Examples with discrete microscale models were considered in [61]. The discrete mod-
els can be molecular dynamics or kinetic Monte Carlo methods. The macroscale model
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considered in [61] was gas dynamics or general nonlinear conservation laws. It is proven
in [61] that the e(HMM) error consists of three parts: the relaxation error, the error due
to the finite size of the simulation domain for the micro model, and the sampling error.
Clearly as the system size increases, the finite size effect decreases but the relaxation error
increases. Therefore this result gives some suggestions on how to choose the size of the
microscale simulation domain. Unfortunately there are very few explicit results on the
dependence of these errors on the domain size. All known results are proved for lattice
models. We refer to [61] for a discussion on this issue.

10 Limitations of HMM

As was discussed in [56], there are problems for which HMM does not work well. One
class of such problems are problems for which the time history of the detailed microstruc-
tural behavior has to be parametrized in order to determine the macroscale properties.
One such example is the homogenization problem for the Carleman model, discussed
in [56]. Consider the Carlman equation with multiscale initial data:

∂u

∂t
+

∂u

∂x
=v2−u2,

∂v

∂t
− ∂v

∂x
=u2−v2,

u(x,0)= a(x,x/ε),

v(x,0)=b(x,x/ε),

(10.1)

where a(x,y),b(x,y) are assumed to be smooth and 1-periodic in y. The homogenized
equation for this problem is given by [170]:

∂ũ

∂t
+

∂ũ

∂x
=
∫ 1

0
ṽ(x,y,t)2dy−ũ2,

∂ṽ

∂t
− ∂ṽ

∂x
=
∫ 1

0
ũ(x,y,t)2dy− ṽ2,

ũ(x,y,0)= a(x,y),

ṽ(x,y,0)=b(x,y).

(10.2)

Tartar proved [170]:

lim
ε→0

(∣∣∣∣u(x,t)−ũ

(
x,

x−t

ε
,t

)∣∣∣∣+
∣∣∣∣v(x,t)− ṽ

(
x,

x+t

ε
,t

)∣∣∣∣
)

=0.
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Here the natural macroscale variables U are the weak limits of the full microscale solu-
tions:

U(x,t)=
∫ 1

0
ũ(x,y,t)dy= lim

δ→0

(
lim
ε→0

∫
Kδ(x−z)u(z,t)dz

)
,

V(x,t)=
∫ 1

0
ṽ(x,y,t)dy= lim

δ→0

(
lim
ε→0

∫
Kδ(x−z)v(z,t)dz

)
,

where Kδ is some kernel compactly supported in (−δ,δ) with,

∫ δ

−δ
Kδ(x)dx=1.

However for this problem, there is no time scale separation between the dynamics of
(U,V) and the remaining components of (u,v), such as higher order moments. In fact, to
obtain information on (U,V), one has to keep track of the dynamics of the microstructure.
Therefore a blind application of HMM will give wrong results.

As was shown in [67], this particular problem can be effectively treated using a com-
bination of the particle method and a proper sampling procedure for the microstructure.

A second example with a very similar feature is the transport equation with oscilla-
tory velocity fields

∂tu+∂x1

(
a
( x2

ε

)
u
)

=0. (10.3)

The homogenized equation for this problem is [170]

∂tU+ ā∂x1
U =∂2

x1

∫ α

−α
dω(γ)

∫ t

0
dsU(x1+γ(t−s),x2,s) (10.4)

and it shows memory dependence. Here ω is some kernel that depends on a, ā is the
average of a over its period. We refer to [55] for discussions of this example.

Both examples can be treated by the fiber bundle idea discussed earlier. For the ex-
ample of Carleman equation, we can view the y-space as being the fiber. Same can be
said about the linear transport equation. One can then design numerical methods based
on the idea of evolving the microstructure over the fiber. An application of this idea is
presented in [187] for the transport equation.

Another limitation of HMM concerns with the a priori assumption on the constitutive
relation, which is reflected in the constraints on the microscale solver. A crucial advan-
tage of HMM is that it does not need the full knowledge of the macroscale model. But
some knowledge about the macroscale model is important, as we now illustrate.

Consider the problem

∂tu+∇·
(

b
( x

ε

)
u
)

=∇·
(

a
( x

ε

)
∇u
)

, (10.5)

where b and a are smooth periodic functions with period 1. The homogenized equation
for (10.5) is given by

∂tU+∇·(b̄U)=∇·(A∇U), (10.6)
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where A is the homogenized coefficient for the case when b = 0, b̄ is the average of b
over its period. Without knowing that the effective macroscale flux should depend on
the derivative of the macroscale variable U, we might use HMM as in Section 2.2.2, and
impose as constraints over the microscale solver only that the average of u be the same
as the local value of the macroscale variable U. This results in an O(1) error for the
macroscale quantities since it completely neglects the diffusive flux.

The failure in this case is due to the fact that in constructing the constrained microscale
solver, we implicitly made the wrong constitutive assumption that the macroscale flux
depends only on U, not the higher order derivatives of U. This is easily fixed by the meth-
ods described in Section 2.2.2. But it shows that some knowledge about the macroscale
model is crucial for designing the right HMM.

11 Conclusions and new directions

11.1 General procedures and main features of HMM

In summary, the main steps in developing an HMM style of multiscale method are as
follows:

1. Identify the macroscale variables, and the macroscale structure of the problem, such
as variational structure, conservation laws, diffusion processes, etc.

2. Express the microscale model in the form that is consistent with the identified
macroscale structure. In our examples for fluids and solids, this step involves de-
riving the conservation laws from MD, and expressing the fluxes, such as stress, in
atomistic variables. This is the basis for connecting the macroscale and microscale
models.

3. Select the macroscale solver, and identify the data that need to be estimated from
the microscale solver.

4. Design the constrained microscale solver that gives the needed data. Technically
this is often the most difficult step, and is subject to continuous improvement. One
should exploit as much as possible any special features that the problem has, in
order to maximize efficiency.

5. Process the data from the microscale solver in order to extract the macroscale data
needed in the macroscale solver.

HMM is a top-down framework: It is based on the macroscopic solver and uses the
microscale model as a supplement. Its two-component procedure offers a number of
interesting features, including:

1. The ability to make maximum use of our knowledge on all scales. For example,
when choosing the macroscale solver, we may take advantage of what is known at
the macroscale, such as conservation form, variational structure, etc, as well as the
nature of the physical process such as shock formation, phase transformation.
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2. The ability to make maximum use of the special features of the problem. This is
already demonstrated by the examples discussed above. The disparity between
macro and micro time scales, for example, is made use of by the fact that satisfac-
tory approximation for the needed macro data can be obtained by carrying out the
microscale solver on relatively short time intervals.

We have seen that the framework of HMM provides useful guidance for systemati-
cally designing multiscale methods in a wide variety of applications. It also provides a
natural setting for carrying out mathematical analysis of multiscale algorithms.

Despite its success, there are still many more interesting possibilities that have yet
to be explored. We will end this review with a discussion of some of the directions for
further work.

11.2 Algorithm development

From the viewpoint of algorithms, the two most important aspects are:

1. Adaptivity.

2. Data processing techniques.

Adaptivity is important for many applications, and HMM offers new possibilities for
adaptive algorithm. The two most obvious places where adaptive algorithms are needed
are: (1). Adaptively decide whether the empirical macroscale model is accurate enough
or whether the microscale model is needed to supply the data. This is crucial to any adap-
tive model refinement algorithms. What is needed is some local error indicators such as
the error estimators in adaptive finite element method. Some work in this direction has
been done recently by Tinsley Oden and coworkers. (2). Adaptively decide the duration
and size of the domain over which the microscale simulation is carried out in order to
estimate the data.

There is also the possibilities to incorporate the ideas of learning into HMM, or any
other current coupling schemes: As the simulation proceeds, the accumulated data from
the microscale simulations can be used to build a database, the database can then be used
to reduce the complexity of further computation. An example of using such a strategy,
which was called “semi-empirical methods”, was given in [56] for the linear parabolic
homogenization problem. There it is known that the averaged fluxes are linear func-
tions of the macroscopic gradient. Therefore one only has to determine the coefficients of
these linear relations using a few data points obtained from the HMM procedure. This
procedure should be explored in more general situations.

A more ambitious adaptive procedure is to determine adaptively the correct macro-
scale variable and the form of the macroscale model from carefully designed microscopic
experiments. This is an attractive possibility and there are obvious ideas to try, but so far
there are little concrete results in this direction.

The second important aspect of algorithmic development is data processing. Efficient
data processing techniques can increase the accuracy of HMM and reduce the complexity
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by reducing the size of the computational domain which over which microscale models
are solved. One key factor that directly influences the efficiency of the HMM procedure
is the signal to noise ratio in the microscale simulation. The high order accurate kernels
that satisfy the high order moment and regularity conditions discussed in Section 9.2.1
seem to be most useful for data that have specific structure such as periodicity. Most
data obtained from microscopic simulations are quite stochastic and lack such structure.
It is important to develop more advanced techniques for analyzing such data. The most
obvious suggestion is to use wavelets. But even this has not been explored.

11.3 Analytical issues

The most pressing analytical issue at the present time is the analysis of HMM for type
A problems. The difficulty is associated with the fact that for type A problems, it often
requires fundamental understanding about the properties of the defects in order to carry
out some analysis, and currently there are very few examples for which this has been
done.

There are still many issues remaining as far as type B problems are concerned. Esti-
mating accurately e(HMM) often requires understanding quantitatively the rate of con-
vergence of various systems in the thermodynamic limit, as well as the behavior of the
relaxation times as a function of the microscopic system size. Again there are very few
analytical results in this area, particularly for systems described by molecular dynam-
ics and quantum mechanics (see the discussion in [61]). But even for homogenization
problems, our understanding of these issues are quite unsatisfactory. Careful numeri-
cal studies can help to clarify these issues as well as suggest the right form of analytical
results (see for example [61, 145]).
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