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culated by means of Runge-Kutta methods and symplectic methods; the classical dis-
sociation of the HF molecule and classical dynamics of H+

2 in an intense laser field; the
symplectic form and symplectic-scheme shooting method for the time-independent
Schrödinger equation; the computation of continuum eigenfunction of the Schrödinger
equation; asymptotic boundary conditions for solving the time-dependent Schrödinger
equation of an atom in an intense laser field; symplectic discretization based on asymp-
totic boundary condition and the numerical eigenfunction expansion; and applications
in computing multi-photon ionization, above-threshold ionization, Rabbi oscillation
and high-order harmonic generation of laser-atom interaction.
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1 Introduction

The fundamental theorem of Hamiltonian mechanics says that the time-evolution of a
Hamiltonian system is the evolution of symplectic transformation. In this sense, we say
that the Hamiltonian system has a symplectic structure [1, 2]. Therefore, Ruth [3] and
Feng [4] presented the symplectic algorithm for solving the Hamiltonian system, which
leads to a new method for solving the Hamiltonian mechanics. It is now well known that
the symplectic algorithm is a difference method that preserves the symplectic structure,
and it is the method of choice in the long-time calculation and for preserving the structure
of the system [5, 7].

At present, the study and application of symplectic algorithms is well developed [4]-
[27]. In particular, Feng [6] constructed symplectic difference schemes of Hamiltonian
formalism via generating functions, and higher order symplectic schemes and multi-
stage symplectic schemes were presented in [7, 8, 86]. Moreover, symplectic partitioned
Runge-Kutta methods were deduced [12, 22], and multi-symplectic schemes were also
established [24–27]. Up to now, symplectic methods have been applied to many fields,
for example, to the nonlinear Schrödinger equation [28–32], celestial mechanics equa-
tion [33–35], time-evolution of quantum systems [36–39], molecular dynamics [40, 41],
plasma physics [42], the KdV equation, the evolution of vortices in a rotating Bose–
Einstein Condensate, and so on.

A quantum system is an infinite-dimensional Hamiltonian system. The time-evolution
of the time-dependent Schrödinger equation preserves the normalization and symplec-
tic product of the wave function. Thus, the time-dependent Schrödinger equation can be
transformed into a Hamiltonian canonical equation. The square-preserving and symplec-
tic scheme is the reasonable and natural way for solving the time-dependent Schrödinger
equation. Therefore, the symplectic algorithm of the classical Hamiltonian system was
extended to the time-evolution of quantum system [43, 44].

In this paper, we will review the applications of the symplectic algorithm of the classi-
cal Hamiltonian system to the quantum system. The topics of this review article include

a. Symplectic space, explicit symplectic schemes for linear separate Hamiltonian sys-
tems and tailored to the time-dependent Hamiltonian function;

b. The classical theory and classical trajectory methods and the classical dynamics of
molecular system in an intense laser field;
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c. The time-independent Schrödinger equation and symplectic-scheme shooting meth-
od; the computation of the continuum eigenfunction of the one-dimensional time-
independent Schrödinger equation;

d. The interaction of an atom with an intense laser field and the asymptotic boundary
conditions for solving the time-dependent Schrödinger equation of atom in an in-
tense laser field, symplectic discretizations based on the asymptotic boundary con-
dition and the numerical eigenfunction expansion and applications in computing
multi-photon ionization, above-threshold ionization, Rabbi oscillation and high-
order harmonic generation of laser-atom interaction.

2 Hamiltonian systems and symplectic algorithms

We first introduce the fundamental theorem of Hamiltonian mechanics, and then give
some symplectic schemes for solving Hamiltonian systems.

2.1 Legendre transformation of classical mechanics

The classical mechanics tells us that the motion of a mechanics ~r(t) = (x1(t),···xn(t)),
for example the motion of mass system in the potential field U(~r), is depicted by the
Newtonian equation

d

dt
(mi ẋi)+

∂U

∂xi
=0, (i=1,··· ,n), (2.1)

where ẋi :=dxi/dt. The system of equation (2.1) is equipped with the 2n initial conditions:
xi(t0)= x0

i , ẋi(t0)= ẋ0
i , (i=1,··· ,n).

2.1.1 Hamiltonian principle of least action

Theorem 2.1 ([2]). Suppose L=T−U, where T= 1
2 ∑i mi ẋ

2
i and U=U(~r) are the kinetic and po-

tential energy of the mechanical system (2.1), respectively. Then the motion~r(t) of the mechanics
system (2.1) coincides with the extremals of the functional

Φ(~r)=
∫ t1

t0

L(~r,~̇r,t)dt. (2.2)

Contrarily, the extremals of the functional (2.2) coincide with the motion of the mechanics system
(2.1).

Definition 2.1 ([2]). Given a mechanics system. Let ~q = (q1,··· ,qn) be the generalized
coordinate and ~̇q=(q̇1,··· ,q̇n) the generalized velocity. We call

L(~q,~̇q,t)=T−U =
1

2 ∑
i

miq̇
2
i −U(q1,q2,··· ,qn) (2.3)

the Lagrangian function of the mechanics system.
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Figure 1: Legendre transformation.

Some more definitions are given below: ∂L/∂qi is called the generalized mechanics,

pi := ∂L/∂q̇i is called the generalized momentum, the functional Φ(~r) =
∫ t1

t0
L(~r,~̇r,t)dt is

called the action, and the equation

d

dt

(

∂L

∂q̇i

)

− ∂L

∂qi
=0, (i=1,··· ,n) (2.4)

is called the Lagrangian equation. Theorem 2.1 illustrates that the Newtonian equation
(2.1) and the Lagrangian equation (2.4) are equivalent, both of them depict the motion of
the mechanics system.

2.1.2 Legendre transformation of classical mechanics

Let y = f (x) be a convex function, f ′′(x) > 0. We draw a graph of y = f (x) in the (x,y)
plane, see Fig. 1. Let p be a given real number. Consider the straight line y = px, and
denote F(p,x)= px− f (x), which is the difference between the line y= px and the curve
y= f (x). Due to f ′′(x)>0, F(p,x) has a maximum with respect to x at the unique point
x(p); the point x(p) can be found by the condition ∂F/∂x = 0, i.e., f ′(x) = p. For every
value of p, F(p,x)= px− f (x) has a maximum at the unique point x(p).

Now we define g(p)=F(p,x(p)), where g(p) is called the Legendre transformation of
the function f (x). We can see from Fig. 1 that g(p) is the maximum of F(p,x)= px− f (x)
at the point p, i.e.,

g(p)=max
x

F(p,x).

2.1.3 Legendre transformation for many variables

Let f (~x)= f (x1,··· ,xn) be a convex function of n variables ~x=(x1,··· ,xn), so that ( ∂2 f
∂~x2 d~x,

d~x) is a positive definite quadratic form. Let ~p = (p1,··· ,pn) be an n-dimensional real
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vector and F(~p,~x)=(~p,~x)− f (~x) be a real function. Then

g(~p)= F(~p,x(~p))=max
~x

F(~p,~x)

is called the Legendre transformation of f (~x), where ~x(~p) can be defined by the condition
∂ f /∂~x=~p.

2.2 Classical Hamiltonian system and symplectic space

The materials of this subsection can be found in [1–6]. By means of a Legendre trans-
formation, a Lagrangian system of a second-order differential equation can be converted
into a symmetrical system of 2n first-order equation which is called the Hamiltonian
canonical equation.

2.2.1 Classical Hamiltonian system

The Lagrangian equation (2.4) can be written in vector form,

d

dt

(

∂L

∂~̇q

)

− ∂L

∂~q
=0. (2.5)

We know that the generalized momentum is ~p = ∂L/∂~̇q, and thus we have ~̇p = ∂L/∂~q.
Suppose that Lagrangian function is L(~q,~̇q,t): R

n×R
n×R → R, which is convex with

respect to the second variables ~̇q, ∂2L/∂q̇2
i >0,i=1,··· ,n.

Theorem 2.2. The system of Lagrangian equations (2.5) is equivalent to the system of 2n first-
order Hamiltonian equations,

~̇p=−∂H

∂~q
, ~̇q=

∂H

∂~p
, (2.6)

or equivalently,

ṗi =−∂H

∂qi
, q̇i =

∂H

∂pi
, (i=1,··· ,n), (2.7)

where the Hamiltonian function H(~p,~q,t) is the Legendre transform of the Lagrangian function
L(~q,~̇q,t) viewed as a function of ~̇q, i.e.,

H(~p,~q,t)=max
~̇q

{

~p~̇q−L(~q,~̇q,t)
}

. (2.8)

2.2.2 Symplectic space

Symplectic space. Let R
2n be the 2n-dimensional real linear space, and x=(x1,···,x2n)T,

with xj∈R, be a vector of R
2n. Let

J =

(

0 I
−I 0

)

(2.9)
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which is the standard symplectic matrix, where I is the n×n identical matrix. For x∈R
2n

and y∈R
2n, we define the symplectic product

[x,y]=
n

∑
i=1

(xiyn+i−xn+iyi)=(x1 ···x2n)J







y1
...
y2n






,

which is a bilinear anti-symmetric form. The space {R
2n,[x,y]} is called the symplectic

space. If we let z=(p,q)T , the Hamiltonian equation (2.7) can be written as

ż= J−1 ∂H

∂z
. (2.10)

Symplectic mapping. Let Ŝ : R
2n → R

2n be a mapping. If Ŝ preserves the symplectic
product, i.e.,

[

Ŝ(x),Ŝ(y)
]

=[x,y], x,y∈R
2n, (2.11)

then Ŝ is called the symplectic transformation or symplectic mapping. Moreover, if Ŝ is
a linear transformation, and if we choose a basis vector in R

2n, then Ŝ coincides with a
matrix S, i.e.,

Ŝ(e1 ···e2n)=(e1 ···e2n)S, Ŝ(x)=Sx, (2.12)

where x=(x1,··· ,x2n)T = x1e1+···+x2ne2n ∈R
2n.

Theorem 2.3. The linear transformation S is a symplectic transformation if and only if

ST JS= J. (2.13)

We now give the definitions for symplectic matrix and infinitesimal symplectic matrix.

Definition 2.2. If the 2n-order matrix S satisfies

ST JS= J, (2.14)

then S is called a symplectic matrix. If the 2n-order matrix B satisfies

JB+BT J =0, (2.15)

then B is called an infinitesimal symplectic matrix.

Theorem 2.4. If the 2n-order matrix A is an infinitesimal symplectic matrix, then its exponential
transformation exp(A) is a symplectic matrix. If the 2n-order matrix B is a symplectic matrix
and |I+B| 6=0, then

F=(I+B)−1(I−B) (2.16)

is a symplectic matrix. F defined above is called the Cayley transformation of B.
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The fundamental theorem of Hamiltonian mechanics. It is easy to verify that all 2n×
2n-order symplectic matrices form a group under matrix multiplication, which is called
the symplectic group and denoted by Sp(2n).

Theorem 2.5. If S is a symplectic transformation,

z=S(ẑ), H(z)= H(S(ẑ))= Ĥ(ẑ), (2.17)

then the canonical equation (2.10) can be transformed into

˙̂z= J−1 ∂Ĥ

∂ẑ
= J−1Ĥẑ. (2.18)

Theorem 2.6. The solution of the canonical equation (2.10) is generated by a one-parameter
symplectic group {gt

H ;−δ < t < δ}. That is to say, gt
H is a symplectic transformation, g0

H is the

identical transformation, gt1+t2
H = gt1

H ·gt2
H . If z(0) is the initial condition, then the solution of the

canonical equation (2.10) is
z(t)= gt

H(z(0)). (2.19)

gt
H is called the phase flow of the canonical equation (2.10).

2.3 Symplectic algorithm

Based upon the fundamental theorem of Hamiltonian mechanics, Ruth [3] and Feng [4–6]
presented the symplectic algorithm for solving the Hamiltonian system, and found a new
method for solving the Hamiltonian mechanics. In this section, we will briefly describe
the symplectic schemes for solving the Hamiltonian equation, and give some symplectic
schemes often used in computational quantum systems.

2.3.1 Explicit symplectic scheme for linear separate Hamiltonian system

If we take the Hamiltonian function to be of a quadratic form

H(z)=
1

2
zTGz, GT =G, (2.20)

then this Hamiltonian system is a linear system which can be written as

dz

dt
= Bz, B= J−1G, (2.21)

where G is a symmetric non-singular constant matrix. It is easy to verify that the matrix
B is an infinitesimal symplectic matrix. The solution of the canonical equation (2.21) is

z(t)= gt(z(0)), gt =exp(tB).

The phase flow of the exponential transformation of an infinitesimal symplectic matrix is
a symplectic matrix.
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If the Hamiltonian system is separable, then the Hamiltonian function has the form

H(z)= H(p,q)= H1(p)+H2(q), (2.22)

and the canonical equation is

dp

dt
=−∂H2(q)

∂q
,

dq

dt
=

∂H1(p)

∂p
. (2.23)

If the Hamiltonian system is linear and separable, then the Hamiltonian function has the
form

H(p,q)=
1

2

(

pT,qT
)

G

(

p
q

)

=
1

2
(pTUp+qTVq) (2.24)

=kinetic energy + potential energy,

where

G=

(

U 0
0 V

)

,

U is symmetric positive definite and V =VT. Then the canonical equation becomes

dp

dt
=−Vq,

dq

dt
=Up. (2.25)

Now we give explicit symplectic schemes for solving a separable Hamiltonian system.
Let τ be the time step, and zn = z(nτ), n=1,2,··· .

Scheme I. For the Hamiltonian system (2.20), the Euler-centered scheme

1

τ
(zn+1−zn)= B

1

2
·(zn+1+zn) (2.26)

is a 2nd-order symplectic scheme, which gives the transformation from zn to zn+1,

zn+1 = Fτzn, Fτ =
(

I− τ

2
B
)−1(

I+
τ

2
B
)

=ψ
(

−τ

2
B
)

, (2.27)

where ψ(λ)=(1−λ)/(1+λ), ψ(B) is the Cayley transformation of matrix B. It is easy to
verify that ψ(B) is a symplectic matrix if B is an infinitesimal symplectic matrix.

For linear and separable Hamiltonian system (2.24), the symplectic scheme (2.26) be-
comes

1

τ
(pn+1−pn)=−V

1

2
·(qn+1+qn),

1

τ
(qn+1−qn)=U

1

2
·(pn+1+pn). (2.28)

Scheme II. For the linear and separable Hamiltonian system (2.24), the scheme

1

τ
(pn+1−pn)=−Vqn+ 1

2 ,
1

τ
(qn+ 1

2 +1−qn+ 1
2 )=Upn+1 (2.29)

is a 2nd-order explicit symplectic scheme.
For a separable Hamiltonian system (2.22), explicit symplectic schemes are often used.

These include
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• The 1st-order explicit symplectic scheme:

pn+1 = pn−τ

(

∂H2

∂q

)

qn

, qn+1 =qn+τ

(

∂H1

∂p

)

pn+1

; (2.30)

• The 2-stage, 2nd-order explicit symplectic scheme:

p1 = pn, q1 =qn+
τ

2

(

∂H1

∂p

)

p1

,

pn+1 = p1−τ

(

∂H2

∂q

)

q1

, qn+1 =q1+
τ

2

(

∂H1

∂p

)

pn+1

; (2.31)

• The 3-stage, 3rd-order explicit symplectic scheme:

p1 = pn−c1τ

(

∂H2

∂q

)

qn

, q1 =qn+d1τ

(

∂H1

∂p

)

p1

,

p2 = p1−c2τ

(

∂H2

∂q

)

q1

, q2 =q1+d2τ

(

∂H1

∂p

)

p2

,

pn+1 = p2−c3τ

(

∂H2

∂q

)

q2

, qn+1 =q2+d3τ

(

∂H1

∂p

)

pn+1

, (2.32)

where

c1 =
7

24
, c2 =

3

4
, c3 =− 1

24
, d1 =

2

3
, d2 =−2

3
, d3 =1, (2.33)

or

c1 =1, c2 =−2

3
, c3 =

2

3
, d1 =− 1

24
, d2 =

3

4
, d3 =

7

24
; (2.34)

• The 4-stage, 4th-order explicit symplectic scheme:

p1 = pn−c1τ

(

∂H2

∂q

)

qn

, q1 =qn+d1τ

(

∂H1

∂p

)

p1

,

p2 = p1−c2τ

(

∂H2

∂q

)

q1

, q2 =q1+d2τ

(

∂H1

∂p

)

p2

,

p3 = p2−c3τ

(

∂H2

∂q

)

q2

, q3 =q2+d3τ

(

∂H1

∂p

)

p3

,

pn+1 = p3−c4τ

(

∂H2

∂q

)

q3

, qn+1 =q3+d4τ

(

∂H1

∂p

)

pn+1

, (2.35)

where

c1 =0, c2 = c4 =α, c3 = β, d1 =d4 =
1

2
α, d2 =d3 =

1

2
(α+β), (2.36)

or

c1 = c4 =
1

2
α, c2 = c3 =

1

2
(α+β), d1 =d3 =α, d2 = β, d4 =0, (2.37)

and α=(2− 3
√

2)−1, β=1−2α.



10 X. S. Liu, Y. Y. Qi, J. F. He and P. Z. Ding / Commun. Comput. Phys., 2 (2007), pp. 1-53

2.3.2 Explicit symplectic schemes for time-dependent Hamiltonian functions

In a quantum system, we often need to solve numerically the Hamiltonian system in-
volving the time variable explicitly. The Hamiltonian function has the form

H(p,q,t)= H1(p,t)+H2(q,t). (2.38)

The 1st-order explicit symplectic scheme

pn+1 = pn−τ

(

∂H2(q,t)

∂q

)

(qn,t
n+ 1

2
)

, qn+1 =qn+τ

(

∂H1(p,t)

∂p

)

(pn+1,t
n+ 1

2
)

, (2.39)

and the 2nd-order explicit symplectic scheme

p1 = pn, q1 =qn+
τ

2

(

∂H1(p,t)

∂p

)

(pn,t
n+ 1

2
)

,

pn+1 = p1−τ

(

∂H2(q,t)

∂q

)

(q1,t
n+ 1

2
)

, qn+1 =q1+
τ

2

(

∂H1(p,t)

∂p

)

(pn+1,t
n+ 1

2
)

(2.40)

are tailored to the time-dependent Hamiltonian system (2.38), where tn+ 1
2
= t0+(n+

1/2)τ.

We can use a simple technique [22] to construct high-order explicit symplectic schemes
from known symplectic schemes. For example, the n-stage nth-order explicit symplectic
scheme is of the form

p1 = pn−c1τ
(

∂H2(q,t)
∂q

)

(qn,tn)
,

ζ1 = tn +c1τ,

p2 = p1−c2τ
(

∂H2(q,t)
∂q

)

(q1,ξ1)
,

ζ2 = ζ1+c2τ,

p3 = p2−c3τ
(

∂H2(q,t)
∂q

)

(q2,ξ2)
,

ζ3 = ζ2+c3τ,
...

pn+1 = pn−1−ckτ
(

∂H2(q,t)
∂q

)

(qn−1,ξn−1)
,

ζn = ζn−1+cnτ,

q1 =qn+d1τ
(

∂H1(p,t)
∂p

)

(p1,ζ1)
,

ξ1 = tn +d1τ;

q2 =q1+d2τ
(

∂H1(p,t)
∂p

)

(p2,ζ2)
,

ξ2 = ξ1+d2τ;

q3 =q2+d3τ
(

∂H1(p,t)
∂p

)

(p3,ζ3)
,

ξ3 = ξ2+d3τ;
...

qn+1 =qn−1+dnτ
(

∂H1(p,t)
∂p

)

(pn+1,ζn)
,

ξn = ξn−1+dnτ,

where pj,qj,ξ j,ζ j, j=1,··· ,n, are intermediate stages.

In a quantum system, we also need to solve the Hamiltonian system

H(p,q,t)= H1(p)+H2(q,t), (2.41)
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whose Hamiltonian equation is















ṗ=−∂H2(q,t)

∂q
=− f (q,t),

q̇=
∂H1(p)

∂p
= g(p).

(2.42)

The following schemes can be used to solve numerically the Hamiltonian system (2.42).

• The 1st-order explicit symplectic scheme:

pn+1 = pn−τ f (qn,tn), qn+1 =qn +τg(pn+1); (2.43)

• The 2-stage, 2nd-order explicit symplectic scheme:

p1 = pn, q1 =qn+
1

2
τg(p1), ξ1 = tn +

1

2
τ,

pn+1 = p1−τ f (q1,ξ1), qn+1 =q1+
1

2
τg(pn+1), tn+1 = ξ1+

1

2
τ;

(2.44)

• The 4-stage, 4th-order explicit symplectic scheme:

p1 = pn−τc1 f (qn,tn), q1 =qn+τd1g(p1), ξ1 = tn+τd1,

p2 = p1−τc2 f (q1,ξ1), q2 =q1+τd2g(p2), ξ2 = ξ1+τd2,

p3 = p2−τc3 f (q2,ξ2), q3 =q2+τd3g(p3), ξ3 = ξ2+τd3,

pn+1 = p3−τc4 f (q3,ξ3), qn+1 =q3+τd4g(pn+1), tn+1 = ξ3+τd4, (2.45)

where pj,qj,ξ j, j=1,2,3, are intermediate stages, and the constants cj and dj are given
by (2.36) or (2.37).

Sanz-Serna and Portillo [22] presented an s-stage, r-order partitioned Runge-Kutta method
(PRK method):

un,0 =qn, vn,1 = pn,

un,i =un,i−1+τBig(vn,i), vn,i+1 =vn,i−τbi f (un,i,tn+Ciτ), 1≤ i≤ s;

qn+1 =un,s, pn+1 =vn,s+1,

(2.46)

where un,i and vn,i are intermediate stages, bi, Bi are constants, and Ci = B1+···+Bi. For
example, for s=5 and r=4, i.e., the 5-stage, 4th-order PRK method, we have

b1 =
6

11
, b2 =

1

2
−b1, b3 =b2, b4 =b1, b5 =0,

B1 =
1

3924
(642+

√
471), B2 =

121

3924
(12−

√
471),

B3 =1−2(B1+B2), B4 = B2, B5 = B1.
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2.3.3 Symplectic scheme for general Hamiltonian system

For the general Hamiltonian system (2.10), the Euler-centered scheme

zn+1−zn

τ
= J−1

(

∂H

∂z

)

( zn+1+zn

2 )

(2.47)

is a 2nd-order implicit scheme. Feng [6] constructed symplectic schemes based on the
generating function. For example, the 1st-order symplectic scheme is of the form

pn+1 = pn−τ

(

∂H

∂q

)

(pn+1,qn)

, qn+1 =qn+τ

(

∂H

∂p

)

(pn+1,qn)

; (2.48)

and the 4th-order symplectic scheme is of the form

zn+1−zn

τ
= J−1(∇H)

( zn+1+zn

2 )
− τ2

24
J−1∇z((∇H)T JHzz J∇H)

( zn+1+zn

2 )
. (2.49)

We rewrite equation (2.10) in the form

ż= J−1 ∂H

∂z
= f (z). (2.50)

Sanz-Serna and Portillo [22] constructed a 2-stage, 4th-order implicit symplectic Runge-
Kutta scheme,

Y1 = zn+τ

(

1

4
f (Y1)+

(

1

4
−
√

3

6

)

f (Y2)

)

,

Y2 = zn+τ

((

1

4
+

√
3

6

)

f (Y1)+
1

4
f (Y2)

)

,

zn+1 = zn+
τ

2
( f (Y1)+ f (Y2));

(2.51)

and a 2-stage, 2nd-order implicit symplectic Runge-Kutta scheme,

Y1 = zn +
τ

2
f (Y1), Y2 = zn+

τ

2
f (Y1)+

τ

4
f (Y2),

zn+1 = zn+
τ

2
( f (Y1)+ f (Y2)).

(2.52)

3 Classical dynamics of molecular system in an intense laser

field

The classical trajectory method, in which the nuclei are assumed to move on the elec-
tronic potential energy surface of the molecular system, is an effective method to study
micro-reaction, which requires to compute many classical trajectories. We point out that
the symplectic algorithm is a more effective method in the calculation of the classical
trajectories.
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3.1 Classical trajectories for free-field molecular system

3.1.1 Classical theory and classical trajectory method

While the dimensionality of the molecular system becomes large, the quantum mechan-
ical methods will be intractable in the study of molecular kinetics and dynamics. In this
case, the classical method in which the nuclei move on the electronic potential energy
surface of the molecular system is often adopted.

The classical trajectory method of the molecular dynamics study is conveniently di-
vided into several steps. The first of these is the evaluation of the electronic potential
energy surface of the given molecular system. Once the potential energy surface deter-
mined, the next task is to solve the Hamilton’s equations of the molecular system because
the classical mechanics are assumed to be valid for the motion of the nuclei on the po-
tential energy surface. After a set of initial coordinates and momentum of the nuclei
have been determined, a unique trajectory can be obtained by integrating the Hamilton’s
equations of motion. Since only a set of initial states selected is not reasonable in the
experimental situation, all kinds of possible initial states of the molecular system consid-
ered must be calculated. After a large number of classical trajectories of the molecular
system have been obtained, we may evaluate the measurable quantities of interest by
the appropriate statistical average. In the following, we give a brief introduction to the
methodology of the classical trajectory.

Classical Equations of Motion.The numerical integration of a set of differential equa-
tions are involved during the calculation of trajectories of the classical trajectory method.
And the form of these equations depends on the choice of coordinates system. We give a
brief introduction of the formulation of the equations of motion for N atom system in a
generalized coordinate system.

With the Newton’s second law, classical equations of motion can be expressed in the
following form if a Cartesian coordinate system is adopted:

d

dt

(

∂T

∂Ẋi

)

+
∂V

∂Xi
=0,

d

dt

(

∂T

∂Ẏi

)

+
∂V

∂Yi
=0,

d

dt

(

∂T

∂Żi

)

+
∂V

∂Zi
=0, (3.1)

for i=1,··· ,N, where (Xi,Yi,Zi) is the coordinate of the ith atomic nucleus, V is the poten-
tial energy function of the N atom system, and the kinetic energy T of the system has the
form

T =
1

2

N

∑
i=1

mi(Ẋ2
i +Ẏ2

i +Ż2
i ). (3.2)

Obviously, (3.1) is a set of 3N second-order differential equation of motion in the Carte-
sian coordinates. In many cases, Eq. (3.1) is directly applicable to the problem if the
adopted coordinate system is the Cartesian one. However, it is more convenient to em-
ploy a generalized coordinate system when the given system contains three atoms or less.
By an appropriate set of transformation equations, Eq. (3.1) can be transformed into La-
grangian form applicable to any set of generalized coordinates. Since a set of first-order
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differential equations facilitates the numerical solution during the computation of classi-
cal trajectories, the Hamiltonian form of the equations of motion is often introduced.

The classical Hamiltonian is defined by H=T+V, and we have the Hamilton’s equa-
tions of motion,

ṗi =−∂H

∂qi
, q̇i =

∂H

∂pi
, i=1,··· ,3N. (3.3)

Eq. (3.3) is a set of 6N first-order differential equations known as Hamilton’s equations that
constitute the working equations for most trajectory calculations.

Selection of initial conditions. In the classical trajectory study, all kinds of possi-
ble initial states corresponding to the experimental situation for the N atoms system have
to be involved. In such a case, the Monte Carlo statistical average is often adopted to yield
a large number of initial states of N atom systems. As a matter of fact, the Monte Carlo
procedure is the only practical approach to simulate the average properties of classical
trajectories of the given system.

Evaluation of the measurable attributes. After all kinds of possible initial states
are selected by the Monte Carlo procedures, we can obtain a large number of classical
trajectories of the given system. The measurable attributes of interest of the system can
be evaluated by the appropriate statistical average of all classical trajectories.

For example, the reaction probability of the atom-molecule reaction system can be
determined from the equation

Pb(b,v, J,Et)= lim
N→∞

Nr(b,v, J,Et)

N(b,v, J,Et)
,

where b is the impact parameter, v is the vibrational level of the reactant molecule, J
is the rotational level of the reactant molecule, Et is the relative translational energy,
Nr(b,v, J,Et) and N(b,v, J,Et) are the numbers of reactive trajectories and total trajecto-
ries, respectively. When we fix the initial condition set (b,v, J,Et), with the values of other
variables selected randomly by the Monte Carlo procedure, the corresponding reaction
probability of the atom-molecule reaction system can be calculated by the above equa-
tion. With the knowledge of Pb(b,v, J,Et), the total reaction cross-section Sr(v, J,Et) can
be determined by the equation

Sr(v, J,Et)=πb2
max(v, J,Et)[Nr(v, J,Et)/N(v, J,Et)],

where Nr(v, J,Et) and N(v, J,Et) are the numbers of reactive collisions and total collisions
at a given set of initial conditions (v, J,Et), respectively, and bmax(v, J,Et) is the maximal
impact parameter.

3.1.2 Diatomic molecular system

Consider the classical motion of a diatomic molecule AB in the electronic potential, where
the mass of atom A is m1 and the mass of atom B is m2. The coordinates of A and B
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are x1 and −x2, respectively. Suppose q = R = x1+x2 is the canonical coordinate, µ =
(m1+m2)/(m1m2) is the canonical mass. Then p=µqt and U = p2/(2µ) are the canonical
momentum and canonical kinetic, respectively. The Morse potential is

V(q)= De{1−exp(−α(q−q0))}2 ,

while the Murrell-Sorbie potential is

V(q)=−D
{

1+∑
k

ak(q−qe)
ke−a1(q−qe)

}

.

The total energy of the diatomic molecule AB system is

H(p,q)=U(p)+V(q)=
1

2µ
p2+V(q), (3.4)

and the classical Hamiltonian canonical equation is

dp

dt
=−∂H

∂q
=−∂V

∂q
,

dq

dt
=

∂H

∂p
=

∂U

∂p
=

p

µ
.

(3.5)

Since (3.5) is a separated Hamiltonian system, an explicit symplectic scheme can be used
to solve this system, for example, the explicit symplectic scheme (2.30)-(2.35).

We fit the potential parameters to the HF molecule in the Morse potential, such that
De = 0.225, α = 1.1741, q0 = 1.7329 and µ = 1744.8423, where atomic units are used un-
less otherwise stated. This potential supports 24 bound vibrational levels for the HF
molecule, i.e ν=0,1,··· ,23.

Fig. 2 shows the evolution of the energy and the nuclei separation versus time without
laser pulse. Fig. 2(a) indicates that the energy is conserved, while Fig. 2(b) indicates
that two atoms oscillate periodically in the evolution process. Fig. 3 depicts the phase
trajectories of free HF molecule in phase space R-P. We can see from Fig. 3 that the
phase trajectories in phase space are steady, which is in good agreement with the theoretic
analysis.

3.1.3 Model molecule A2B

Banerjee and Adams [45] constructed a transformation in a straightforward way to yield
a set of active and redundant coordinates in which the Hamiltonian equations are sepa-
rable. For an N-particle system with Hamiltonian function H = H(pi,qi), 1≤ i≤ 3N, the
corresponding Hamiltonian equations are

ṗi =−∂H

∂qi
, q̇i =

∂H

∂pi
,
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Figure 2: The evolution of the energy and the nuclei separation without pulse. (a) The evolution of the energy;
(b) The evolution of the nuclei separation versus time, where the middle line represents the equilibrium nuclei
separation R0.

Figure 3: Phase trajectories of free HF molecule in the phase space R-P.

where qi is the canonical coordinate, and pi is the canonical momentum. The kinetic
energy has the form T = pT M−1p/2, where p = (p1,··· ,pn)T, M−1 is the mass matrix
which is a diagonal matrix formed by the mass of N-particle. The potential energy has
the form V=V(q), which is only a function of coordinate, where q=(q1,··· ,qn)T. From the
canonical transformation Q=T−1q, P=TT p and independent relations ∂H/∂qα=C∂H/∂qi

obtained by the symmetry relation [45], the coordinates can be separated into active and
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cyclic coordinates. In such way, we can obtain the generalized coordinate

Qi =qi+CTqα =qi+Ciαqα, (3.6)

and the generalized mass

Ω−1
ii =m−1

ii +CTm−1
αα C, (3.7)

where the mass matrix M−1 =diag(m−1
ii ,m−1

αα ) is block diagonal.
Consider the motion of the model of an A2B type molecule within the C2v symmetry.

Suppose the mass of atom A and atom B is m1 =1 and m2 =2, respectively. The atom B is
labeled particle 1, and the two A atoms are labeled 2 and 3, respectively. We constructed
the Cartesian coordinate system yOz, with origin at the center of mass O, and the z axis is
the C2 axis. Denote the coordinates of the two A atoms and atom B by A(y1,z1), A(y2,z2)
and B(y3,z3), respectively. The potential energy function is given by

V =10π2
{

f (△)
[

(r12−1)2+(r13−3/2)2
]

+ f (−△)
[

(r12−1)2+(r13−3/2)2
]}

+
1

2π2
(r23−3/2)2+

1

r12
+

1

r13
+

1

r23
, (3.8)

where △=5(r12−r13), f (△)=(1+tanh(△))/2, and rij (i, j=1,2,3) is the internuclear dis-
tance. With the C2v symmetry and (3.6)-(3.7), we can obtain the generalized coordinates

Q1 = z1−2z3+z2, Q2 =y1−y2, (3.9)

and the generalized mass

Ω1 =(2/m1+4/m2)
−1 =

1

4
, Ω2 =(2/m1)

−1 =
1

2
, (3.10)

such that the Hamiltonian function of the A2B type molecule is

H(P,Q)=K(P)+V(Q), (3.11)

where the kinetic energy and potential energy are given by

K(P)=2P2
1 +P2

2 ,

V(Q)=5π2

(

D2−5D+
13

2

)

+
4

D
+

π2

2

(

|Q2|−
3

2

)2

+
1

|Q2|
,

(3.12)

respectively. Here the generalized momentum P1 =(1/4)dQ1/dt, P2 =(1/2)dQ2/dt and

D=
√

Q2
1+Q2

2. The canonical equation of classical motion is

Ṗi =− ∂V

∂Qi
=− fi(Q1,Q2), Q̇i =

∂K

∂Pi
= gi(P1,P2), i=1,2, (3.13)
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Figure 4: Classical trajectories in phase space: (a) and (c) are obtained by using a symplectic method; and (b)
and (d) are obtained by using a Runge Kutta method.

where

f1(Q1,Q2)=5π2Q1(2−5/D)−4Q1/D3, g1(P1,P2)=4P1, g2(P1,P2)=2P2,

f2(Q1,Q2)=5π2Q2(2−5/D)−4Q2/D3+

{

π2(Q2−3/2)−Q−2
2 if Q2 >0,

π2(Q2+3/2)+Q−2
2 if Q2 <0.

This Hamiltonian system is separable, which can be solved by the explicit symplectic
schemes (2.30)-(2.32). Fig. 4 shows the classical trajectories of an A2B type molecule in
phase spaces, obtained by using a symplectic method and a Runge-Kutta method, respec-
tively. It is observed from Fig. 4 that the numerical results computed by the symplectic
method are in good agreement with the theoretical analysis; the atom B and two atoms
A in A2B type molecule vibrate quasi-periodically. However, the numerical results com-
puted by the Runge-Kutta method are not in agreement with the theoretical analysis; the
vibrational range of A2B type molecule shrinks [46].

Fig. 5 shows the energy evolutions computed by symplectic method and the Runge-
Kutta method. The total energy computed by the symplectic method is consistent with
the physical analysis, but that from Runge-Kutta is unpredictable.

The above computations indicate that the symplectic algorithm is a class of difference
method that preserves the symplectic structure, and is a reliable method for long time
simulations of the classical trajectories.
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Figure 5: Comparison of the energy evolutions.
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Figure 6: The evolution of the total energy in free-
field by using a symplectic method and a Runge-
Kutta method.
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Figure 7: The evolution of the electronic position
and the internuclear distance in free-field by using a
symplectic method.

3.1.4 Hydrogen molecular ion H+
2

The two protons and electron in H+
2 system can be regarded as the classical particles

based on the classical theory. The system of H+
2 is regarded as a three-body system of

classical mechanics. The classical movement of system is described by the Hamiltonian
canonical equation. The Hamiltonian function of H+

2 can be written as

H(P,p;x,R)=
P2

2µp
+

p2

2µe
+Vc(x,R) , (3.14)

where µp =mp/2, µe =2memp/(2mp+me) are the reduced masses, mp, me are the proton
and electron masses, respectively. R is the internuclear distance of two protons and P is its
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corresponding conjugated momentum, while x is the distance between the electron and
the center of the mass of two protons, and p is its corresponding conjugated momentum.
The screened Coulomb potential is

Vc(x,R)=
1

R
−
(

(x−R/2)2+qe

)−1/2
−
(

(x+R/2)2+qe

)−1/2
,

where the parameter qe (we choose qe=1 a.u.) is the screened parameter of the 1D Coulomb
potential.

We give an initial energy E0=−0.78 a.u.. Fig. 6 indicates that the evolution of the total
energy in the free-field can be preserved for long-time computation by using a symplectic
method, but the evolution of the total energy decreases rapidly for long-time computa-
tion when using Runge-Kutta method. We show the evolution of the electronic position
and the internuclear distance obtained by using the symplectic method in Fig. 7. The
electron and nuclear oscillate periodically near the balanced position which illustrates
that the system remains stable when using the symplectic method.

3.1.5 Chemical reaction system

We studied the elementary atmospheric reaction [47,48], N(4S)+O2(X3Σ−
g )→NO(X2Π)+

O(3P), which plays an important role in the Earth’s atmospheric chemistry. This reaction
is a source of infrared chemiluminescence in the thermosphere [49]. High temperature
studies of kinetics and dynamics of the atmospheric reaction and its reverse are also sig-
nificant to interpret the chemical and physical phenomena taking place during the re-
entry of spacecrafts into the Earth’s atmosphere [50].

In the atom-molecule (A+BC) reaction system, the masses of atoms A, B and C are
denoted by mA, mB and mC, respectively. In the present case, A is taken to be the nitrogen
atom (N), B is the first oxygen atom (O) and C is the second oxygen atom (O). Because the
reaction system has no outfield action, the momentum of the reaction system is constant.
Separating out the center-of-mass motion, we write the internal Hamiltonian in the form

H =
1

2µB,C

3

∑
j=1

P2
j +

1

2µA,BC

6

∑
j=4

P2
j +V(Q1,...,Q6), (3.15)

where Qj (1≤ j≤6) represents the generalized Cartesian coordinate, Pj (1≤ j≤6) is the
momentum conjugate to the Qj, V(Q1,··· ,Q6) is the potential energy function, and the
reduced masses are µB,C =mBmC/(mB+mC) µA,BC =mA(mB+mC)/(mA+mB+mC).

Numerous quasiclassical trajectories, based on the new ground PES reported by
R. Sayós et al. [51], have been calculated by means of the 4th-order explicit symplectic
algorithm (S4) for the atmospheric reaction, and then the result is compared to that com-
puted by the 4th-order Runge-Kutta scheme (RK4). Fig. 8 depicts the comparison of the
total energy evolving with the time computed by S4 and RK4, respectively. It is observed
from Fig. 8(a) that the total energy of the reaction system calculated by RK4 decreases
with the time. This reveals that the deviation of the total energy will become larger if
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(a) (b)

Figure 8: Comparison of total energies evolving with the time computed, respectively, by S4 and RK4: (a)

Et=0.3eV, v=0, J=8, h=5.0×10−16s (non-reaction), (b) Et=0.5eV, v=0, J=8, h=5.0×10−16s (reaction).

the time is longer. The phenomenon in Fig. 8(a) is accounted for that the deviation of
total energy adds in value with the time since the truncation error continuously accu-
mulates during the integration. Except that the total energy computed by S4 oscillates
slightly near the exact value, however, it is almost a constant. Since a reaction takes place
in Fig. 8(b), its phenomenon is a little different from that in Fig. 8(a). The curve of total
energy evolving with the time computed by RK4 in the product part has a larger slope
than that in the reactant part, and the vibrating of total energy computed by S4 in the
product part is clearly larger than that in the reactant part. The reason is that deviation
of total energy is determined by the potential energy curve of the O2 molecule before the
reaction and by that of the NO molecule after the reaction.

Since RK4 cannot preserve the energy conservation and the symplectic structure of
the reaction system, the trajectories computed by RK4 have some obvious differences
from those computed by S4 under the same condition. Fig. 9 shows the comparison of
some typical trajectories, where RHO denotes the initial distance between the N atom
and the O2 molecule in a.u., Et denotes the relative transnational energy in eV, h is the
time step size in seconds, v and J represent, respectively, the vibrational and rotational
level of O2 molecule, R is the separation distance of the nuclei and the energy unit is
taken to be kcal/mol. The trajectories computed by RK4 in Fig. 9(a) clarify that no re-
action occurs although the collision goes through a transition state. Moreover, after the
O2 molecule collides with the N atom, the period and amplitude of vibration of the O2

molecule become large. From Fig. 9(b), however, we see that a reaction that produces the
NO molecule takes place. It is concluded that the loss of total energy may influence the
colliding mode of the trajectories. Two differences exist between Figs. 9(c) and (d) that
display the trajectories computed by RK4 and S4, respectively. One is the reaction mode,
that is, Fig. 9 (c) is a direct reaction and Fig. 9(d) is an indirect reaction. Another is that
the product in Fig. 9(c) is the NO molecule (the first oxygen atom) and there is a different
NO molecule (the second oxygen atom) in Fig. 9(d).
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Figure 9: Comparison of trajectories evolving with time computed respectively by RK4 and S4. (a) Et=0.9eV,

v=0, J=16, RHO=110.0a.u., h=4.0×10−16s (by RK4). (b) Et=0.9eV, v=0, J=16, RHO=110.0a.u.,

h=4.0×10−16s (by S4). (c) Et=0.9eV, v=0, J=0, RHO=220.0a.u., h=7.5×10−16s (by RK4). (d) Et=0.9eV,

v=0, J=0, RHO=220.0a.u., h=7.5×10−16s (by S4).

We calculate a large number of quasiclassical trajectories by S4 for the atmospheric
reaction, and some typical trajectories are presented in Fig. 10 at different relative trans-
lational energies, rotational and vibrational energy levels of the O2 molecule. Fig. 10 (a)
and Fig. 10(b) show the typical trajectories proceeding through an indirect mechanism.
The N atom links with the first oxygen atom to make the NO molecule in Fig. 10(a), how-
ever, the reaction product in Fig. 10(b) consists of the N atom and the second oxygen
atom. The typical trajectories in a direct mechanism are manifested in Fig. 10(c). The
N atom approaches continuously to the O2 molecule, in such a way that the vibrational
level of the O2 molecule is not influenced by the incoming N atom until the NO bond
distance is almost reached. When the NO molecule is formed, the O-O distance grows
fast. With no reaction occurs, Fig. 10(d) displays a typical elastic collision, where the pe-
riod and amplitude of the vibration of O2 molecule have no variation after the N atom
collides with O2 molecule. The inelastic collision that changes the internal energy of O2

molecule also exists, but for simplicity we do not exhibit it.

Fig. 11(a) demonstrates the dependence of the reaction probability Pb(b,v, J,Et) on the
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Figure 10: Typical trajectories and reactive mode analysis at h=1.0×10−16s and RHO=40.0a.u. (a) Et=0.5eV,
v=0, J=8 (b) Et=0.6eV, v=0, J=8 (c) Et=0.9eV, v=0, J=0 (d) Et=0.3eV, v=0, J=16.

impact parameter at different relative translational energies. As depicted by Fig. 11(a),
the reaction probability reveals a declining trend as the impact parameter moves from 0
to its maximum with an increment of 0.15 Å. Except that both maximal impact param-
eters bmax(v, J,Et) and the areas under these curves of Pb(b,v, J,Et) versus b associated
with the relative translational energy, the shapes of these curves seem to be similar for
all relative translational energies. It is also obvious in Fig. 11 (a) that the reaction prob-
ability as a function of the relative translational energy exhibits an increasing behavior
above the threshold energy. The comparison of reaction probabilities of several rovibra-
tional levels of the O2 molecule has been displayed in Fig. 11(b), which indicates that the
reaction probability is primarily independent of the initial rovibrational level of the O2

molecule. This is due to the O2 molecule remaining almost rotationally frozen, that is,
the rotational period of the O2 molecule is much larger than the corresponding transition
time, so that the O2 molecule does not have enough time to rotate in the course of the N
atom interacting strongly with the O2 molecule, as pointed out by Sayós et al. [52, 53].

Fig. 12 describes the variation of the total reaction cross-section with the relative trans-
lational energy. As depicted by Fig. 12, the total reaction cross-section enhances rapidly
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(a) (b)

Figure 11: Variation of the reaction probability with the impact parameter. (a) at different relative translational
energies with O2 molecule in the v=0, J=8 level; (b) at different vibrational levels of O2 molecule in Et=1.8eV.
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Figure 12: Variation of the total reaction cross-section with the relative translational energy. (a) O2 molecule
at v=0 and J=0, 4, 8, 12, 16; (b) O2 molecule at J=8 and v=0, 1, 2.

with the relative translational energy above the energy threshold. From Fig. 12(a), the
influence of the rotational level with the O2 molecule at v=0 on the total reaction cross-
section can also be analyzed. At low relative translational energy (less than 0.60 eV),
the total reaction cross-section increases with the rotational level of the O2 molecule. Al-
though the absolute increments of the total reaction cross-section are fairly small, they
have significant values with respect to the total reaction cross-section at the rovibrational
level (v=0, J=0) of the O2 molecule. However, the rotational level of the O2 molecule
plays an inconspicuous role in enhancing the total reaction cross-section at the higher
relative translational energy. Fig. 12(b) displays the variation of the total reaction cross-
section as the vibrational level of the O2 molecule ranges from 0 to 2. It is apparent that
the vibrational level of the O2 molecule contributes modestly to the enhancement of the
total reaction cross-section. The moderate effect of the vibrational level is due to the new
PES with an early barrier employed in this work.
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3.2 The classical dissociation of HF molecule by intense laser pulse

The Hamiltonian function of HF in external intense laser fields can be written as ([54,55])

H(P,R)= P2/2µ+V(R)−qe ·E(t)·R, (3.16)

where E(t) is the laser field, the effective charge qe can be chosen as [∂Dp(R)/∂R]|R=R0
=

0.31, and Dp(R) is the dipole moment. Moreover, E(t)=EmU(t)sin(Ωc(t)·t), where Ωc=

Ων[1−αl(t/T0)l] with l=1,αl=0.5, Ωυ=1.1ων,ν+1, ων,ν+1 denoting the resonant frequency
from ν→ν+1. The period of the laser is 2π/Ων, and

U(t)=







t/t0 (t≤ t0).
1 (t0 < t<T0−t0),
(T0−t)/t0 (T0−t0 < t≤T0).

(3.17)

We choose a vibrational state Eν as the initial input, solve numerically the Hamiltonian
equation in the free-field, and then select a set of trajectories (R0,P0) of the free-field as
initial conditions in the external intense laser fields. Under these initial conditions we
can solve numerically the Hamiltonian equation of HF in external intense laser fields.
Consequently we can obtain a variety of trajectories which can be used to compute the
dissociation probabilities.

Fig. 13 shows the changes of dissociation probabilities versus the laser intensity Em.
We select some different vibrational states (ν = 3, 8, 9, 15) as the initial input. Fig. 13 in-
dicates that the larger the value of ν is, the smaller the laser intensity is needed to open
the channel of dissociation. Fig. 14 shows the changes of the dissociation probabilities for
different vibrational-rotational states as the initial input versus time with field strength
Em = 1013W/cm2. We choose the vibrational-rotational states (ν = 0, J = 1), (ν = 3, J = 1),
(ν=9, J=1), (ν=15, J=1) as the initial inputs. A comparison between the vibrational tran-
sitional dissociation and the vibrational-rotational transitional dissociation is also made
in Fig. 14.

3.3 Classical dynamics of H+
2 in an intense laser field

In this subsection we will study the interaction of 1D H+
2 in an intense laser pulse by

using the classical theory, and discuss the dynamical processes of survival, dissociation,
ionization and Coulomb explosion of H+

2 for different laser intensity. The external laser
field is E(t) = E0 f (t)sinω0t, and f (t) = sin2(πt/20T) when 0 < t < TD and f (t) = 0 oth-
erwise. We presume that the laser electric field is along the direction of two protons
and adopt the 1D model in which the electron is collinear with two protons. Then the
Hamiltonian function of H+

2 in the external intense laser fields can be written as [56]

H(P,p;x,R,t)=
P2

2µp
+

p2

2µe
+Vc(x,R)+Vex(x,t). (3.18)
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Figure 13: The changes of dissociation probabilities for different vibrational states as the initial input versus
laser intensity Em with interaction time T0 =120 cycles, l =1, αl =0.5.

Figure 14: The changes of dissociation probabilities for different vibrational-rotational states (ν=0, J=1; ν=3,

J =1; ν=9, J =1; and ν=15, J =1) as the initial input versus time with field strength (Em =1013W/cm2), B
denote the vibrational transitional dissociation, C denote the vibrational-rotational transitional dissociation.
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The interaction potential with the external laser field is

Vex(x,t)=−σxE(t), σ=2(mp+me)/(2mp+me). (3.19)

The total energy is [57]

Ec(t)=Vp+
1

2µe
(µe ẋ(t)−σ

∫ t

0
E(t′)dt′)2, (3.20)

where Vp = Vc(x,R)−1/R is the Coulomb potential experienced by an electron. During
the course of system evolution, the electron is ionized when the total-energy Ec(t)>0 and
two nuclei are dissociated when the distance between two protons R(t)>RD = 10.0a.u.
(RD is the largest internuclear distance) [58]. According to the above two criteria, four
processes or channels may occur at any time interval during the interaction of H+

2 with
the laser pulses:

H+
2 +[I]→H+

2 (Ec(t)≤0,R(t)≤RD),

H+
2 +[I]→H+H+ (Ec(t)≤0,R(t)> RD),

H+
2 +[I]→H2+

2 +e(Ec(t)>0,R(t)≤RD),

H+
2 +[I]→2H++e(Ec(t)>0,R(t)> RD),

(3.21)

where [I] stands for the interaction of the laser pulse. We refer to above dynamic pro-
cesses as survival, dissociation, ionization and Coulomb explosion of H+

2 , respectively.
We can select the initial condition by using a single trajectory in the field-free case at

random in time intervals. Under these initial conditions we can solve numerically the
Hamiltonian equation of H+

2 in the external intense laser fields and obtain a variety of
trajectories, which can be used to compute the four dynamic processes (survival, dissoci-
ation, ionization and Coulomb explosion) according to the criteria (3.21).

In Fig. 15, we show the time-evolution of the survival, dissociation, ionization and
Coulomb explosion of H+

2 for different intensity of laser fields with wavelength λ=532nm.
From Fig. 15 we can observe that the survival channel is turned off earlier with the in-
crease of the intense laser field, simultaneously the others are turned on earlier. We can
also observe that the ionization channel is turned on the earliest and the dissociation
channel and the Coulomb explosion channel are turned on at the same time. Fig. 15 re-
veals that the probability curve of survival declines quickly, the probability curves of ion-
ization curve and Coulomb explosion vary quite rapidly, and the dissociation curve does
not vary much with respect to the intense laser field. A very interesting phenomenon is
observed in Fig. 15: the probability of Coulomb explosion remains to be zero until the
probability of ionization reaches its peak value, and then the probability of ionization
decreases rapidly to zero. Finally, the probability of Coulomb explosion goes up rapidly
and reaches its peak value and then keeps unchanged. These results are in agreement
with those obtained by numerically solving the time-dependent Schrödinger equation
(1D model) under the same conditions [59].
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(a) (b) (c)

Figure 15: Variation of probability of survival Ps, ionization Pi, dissociation Pd and Coulomb explosion Pex for
different intensity of laser pulse.

4 Time-independent Schrödinger equation & symplectic-scheme

shooting method

The time-independent Schrödinger equation is one of the basic equations of quantum
mechanics. Its solutions are required in the studies of atomic and molecular structure and
spectra, molecular dynamics and quantum chemistry. In this section, we transform the
Schrödinger equation into a Hamiltonian equation by using the Legendre transformation.
The resulting canonical equation is solved by symplectic methods, and techniques for
solving the eigenvalues and eigenfunctions were developed [60–64].

4.1 One-dimensional time-independent Schrödinger equation

4.1.1 Symplectic form

The one-dimensional time-independent Schrödinger equation may be written in the form
(atomic units are used)

−1

2

d2ψ

dx2
+V(x)ψ=Eψ, (4.1)

where E is the energy eigenvalue, V(x) is the potential, and ψ(x) is the wave function.
Eq. (4.1) can be rewritten in the form

ψ̈+
∂U

∂ψ
=0, (4.2)

where U(x,ψ) = 1
2 B(x)ψ2 and B(x) = 2[E−V(x)]. If x is regarded as the time variable,

and ψ(x) and U(x,ψ) are respectively regarded as a generalized coordinate and a formal
potential function, then ψ̇(x) and ψ̈(x) are the generalized velocity and the generalized
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acceleration, respectively. Thus Eq. (4.2) is a formal Newtonian equation for a particle
with a unit of mass moving in a complex functional space. In this case, if the Lagrange
function,

L(ψ,ψ̇,x)=T−U =
1

2
ψ̇2− 1

2
B(x)ψ2,

is regarded as a function of ψ̇, it is a positive quadratic form in ψ̇. The Legendre transfor-
mation of L(ψ,ψ̇,x) is

H(ψ,ϕ,x)= ϕψ̇−L(ψ,ψ̇,x), (4.3)

which gives
∂

∂ψ̇
(ϕψ̇−L(ψ,ψ̇,x))=0. (4.4)

Eq. (4.4) yields ϕ = ∂L/∂ψ̇ = ψ̇. Substituting ϕ into Eq. (4.3), we obtain the Hamiltonian
function

H(ψ,ϕ,x)=
ϕ2

2
+

1

2
B(x)ψ2. (4.5)

Then the Hamiltonian canonical equation is















ϕ̇=−∂H

∂ψ
=−B(x)ψ,

ψ̇=
∂H

∂ϕ
= ϕ.

(4.6)

Eq. (4.6) is equivalent to the one-dimensional time-independent Schrödinger equation
(4.1). The spatial variation of the solution of the canonical equation (4.6) from x1 to x2 is
given by

(

ϕ(x2)
ψ(x2)

)

= gx1x2
H

(

ϕ(x1)
ψ(x1)

)

.

The Hamiltonian system (4.5) including explicitly the “time” variable is similar to the
Hamiltonian function (2.41), and hence the explicit symplectic schemes (2.43)-(2.46) can
be used to solve this system numerically.

4.1.2 Symplectic-scheme shooting method

We consider the one-dimensional eigenvalue problem with the boundary conditions

ψ(a)=0, ψ(b)=0, (4.7)

where a and b are, respectively, the left and right boundaries. We choose a center point
x=xc (a<xc <b); the calculation can be started from the left boundary to the center point
(x = xc) and from the right boundary to the center point (x = xc), respectively. The left
and right boundaries are regarded as the initial conditions.
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We choose the following initial conditions:

Initial condition 1 : (ϕL(a), ψL(a))=(1,0);

Initial condition 2 : (ϕR(b), ψR(b))=(1,0),

and obtain two solutions: Solution 1 is (ϕL(x),ψL(x)), and Solution 2 is (ϕR(x),ψR(x)).
We know the canonical equation and the boundary conditions (4.7) are linear and homo-
geneous. If the initial condition is c1(ϕL(a),ψL(a))=c1(1,0), then the corresponding solu-
tion is c1(ϕL(x),ψL(x)). Likewise, the solution for the initial condition c2(ϕR(b),ψR(b))=
c2(1,0) is c2(ϕR(x),ψR(x)). These two solutions must be equivalent at x= xc:

c1

(

ϕL(xc)
ψL(xc)

)

= c2

(

ϕR(xc)
ψR(xc)

)

,

i.e.,
(

ϕL(xc) −ϕR(xc)
ψL(xc) −ψR(xc)

)(

c1

c2

)

=0. (4.8)

The values c1 and c2 determined by Eq. (4.8) give the initial conditions (c1,0) and (c2,0)
that we need in the computation. To obtain non-zero solutions, the determinant of the
coefficient matrix of Eq. (4.8) must be zero, i.e.,

det

∣

∣

∣

∣

ϕL(xc) −ϕR(xc)
ψL(xc) −ψR(xc)

∣

∣

∣

∣

=0. (4.9)

If we change the value of the parameter E in (4.1), then the value of the determinant
of the coefficient matrix of (4.8) will be changed; the parameter E satisfying (4.9) is the
eigenvalue that we need to compute. Hence (4.9) is the criterion for convergence of com-
putation. The resulting method is called symplectic-scheme shooting method (SSSM).

We consider a Morse potential

V(x)= D[exp(−2ωx)−2exp(−ωx)], (4.10)

with D=12 and ω =0.204124 (24 bound states). The exact eigenvalues are given by

En =−12+(n+1/2)− 1

48
(n+1/2)2 , n=0,1,··· ,23. (4.11)

We solve the eigenvalues by using the 4-stage 4th-order SSSM. The numerical eigenval-
ues with a=−b=−13.5 are given in Table 1 along with the exact ones. It shows that our
results are in good agreement with the exact solutions.

4.1.3 Numerical method based on the Magnus expansion

The solution of (4.6) with the initial condition (ϕ0,ψ0)T is given by [65]

(

ϕ(x)
ψ(x)

)

=exp(Ω(x))

(

ϕ0

ψ0

)

, (4.12)
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Table 1: Energy eigenvalues of Morse potential (xc =0,h=0.5×10−3).

n exact eigenvalue numerical solution n exact eigenvalue numerical solution

0 -11.50520833 -11.50520844 6 -6.38020833 -6.38020938

1 -10.54687500 -10.54687531 7 -5.67187500 -5.67187614

2 -9.63020833 -9.63020882 8 -5.00520833 -5.00520954

3 -8.75520833 -8.75520899 9 -4.38020833 -4.38020960

4 -7.92187500 -7.92187581 10 -3.79687500 -3.79687628

5 -7.13020833 -7.13020927 11 -3.25520833 -3.25520830

where Ω(x) is the Magnus expansion

Ω(x)=
∫ x

0
A(τ)dτ− 1

2

∫ x

0

[

∫ τ

0
A(σ)dσ,A(τ)

]

dτ

+
1

4

∫ x

0

[

∫ τ

0

(

∫ σ

0
A(µ)dµ,A(σ)

)

dσ,A(τ)

]

dτ

+
1

12

∫ x

0

[

∫ τ

0
A(σ)dσ,

(

∫ τ

0
A(µ)dµ,A(τ)

)]

dτ+··· .

(4.13)

The numerical method of order two based on the Magnus expansion reads

(

ϕn+1

ψn+1

)

=exp(hA(xn +h/2))

(

ϕn

ψn

)

, (4.14)

and the numerical method of order four is

(

ϕn+1

ψn+1

)

=exp
(

h(A1+A2)/2+
√

3h2[A2,A1]/12
)

(

ϕn

ψn

)

, (4.15)

where A1 = A(xn+c1h), A2 = A(xn+c2h), [A2,A1] = A2A1−A1A2, c1 = 1/2−
√

3/6 and
c2 = 1/2+

√
3/6. For convenience, the matrix in the exponentials in (4.14) and (4.15) is

denoted by A; hence

A=

(

0 −hBn+ 1
2

h 0

)

for method (4.14), and

A=







√
3h2

12
(B1−B2) −h

2
(B1+B2)

h −
√

3h2

12
(B1−B2)






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for method (4.15). The Taylor expansion exp(A) can be written as exp(A)= I+A+ 1
2! A2+

1
3! A3+ 1

4! A4+··· . In the following discussion, we take the method (4.14) as an example;
and take for convenience B= Bn+1/2 = B(xn+h/2). Thus

exp(A)=I+

(

0 −hB
h 0

)

+
1

2!

( −h2B 0
0 −h2B

)

+
1

3!

(

0 h3B2

−h3B 0

)

+···+ 1

(2k)!

(

(−1)kh2kBk 0

0 (−1)kh2kBk

)

+
1

(2k+1)!

(

0 (−1)k+1h2k+1Bk+1

(−1)kh2k+1Bk 0

)

+··· .

Then we can obtain the following matrix:

exp(A)=









∑
k=0

1

(2k)!
(−1)kh2kBk ∑

k=0

1

(2k+1)!
(−1)k+1h2k+1Bk+1

∑
k=0

1

(2k+1)!
(−1)kh2k+1Bk ∑

k=0

1

(2k)!
(−1)kh2kBk









. (4.16)

Considering the 2p-th order approximation of the Taylor expansion for exp(A) (n=2p),

exp(A)=













p

∑
k=0

1

(2k)!
(−1)kh2kBk

n+ 1
2

p−1

∑
k=0

1

(2k+1)!
(−1)k+1h2k+1Bk+1

n+ 1
2

p−1

∑
k=0

1

(2k+1)!
(−1)kh2k+1Bk

n+ 1
2

p

∑
k=0

1

(2k)!
(−1)kh2kBk

n+ 1
2













=:

(

Mn
11 Mn

12

Mn
21 Mn

22

)

,

we obtain
(

ϕn+1

ψn+1

)

=exp(A)

(

ϕn

ψn

)

=

(

Mn
11 Mn

12

Mn
21 Mn

22

)(

ϕn

ψn

)

. (4.17)

Eliminating ϕn and ϕn+1, we have

Mn−1
21 ψn+1−(Mn−1

21 Mn
22+Mn

21Mn−1
11 )ψn+Mn

21(Mn−1
11 Mn−1

22 −Mn−1
21 Mn−1

12 )ψn−1 =0, (4.18)

which is a generalized matrix eigenvalue equation. Eq. (4.18) can be written as C1ψn+1−
C2ψn +C3ψn−1 =0, or equivalently,

ψn+1 =C−1
1 (C2ψn−C3ψn−1), (4.19)

which is a three-layer scheme, where C1, C2 and C3 can be determined by (4.18).
Now we consider the one-dimensional eigenvalue problem with boundary conditions

(4.7) [66]. If we have the values of ψ0 and ψ1, the equation can be solved easily using the
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Table 2: The eigenvalues for the harmonic oscillator. a=−15.5, b=15.5, space step h=10−4.

n exact eigenvalue numerical solution n exact eigenvalue numerical solution

0 0.50 0.50000000169 4 4.50 4.50000000026

1 1.50 1.49999999967 5 5.50 5.49999999946

2 2.50 2.50000000056 6 6.50 6.50000000031

3 3.50 3.50000000122

schemes (4.19). We know the left boundary condition ψ0 = ψ(a) = 0, and we set ψ1 =
const.6=0. Thus, the solutions (ψ0,ψ1,··· ,ψN) can be obtained by using the scheme (4.19).
In the calculation, we may take ψ1 =1. The solutions are independent of ψ1 if ψ1 6=0 due
to the fact that ψ0 =0. Because of the right boundary condition, ψN = ψ(b)=0, we must
find the value of the parameter E that makes ψN =0. Note that the coefficients C1,C2 and
C3 are functions of the parameter E. If we change the values of E, we obtain a series for
ψN

E . According to the right boundary condition ψN =0, the parameter E that makes ψN
E =0

is the eigenvalue that we need to compute.

The potential of the one-dimensional harmonic oscillator is taken to be V(x)= x2/2,
x∈R. The exact eigenvalues of the harmonic oscillator are given by En = n+1/2, n =
0,1,··· . The eigenvalues obtained by using the shooting method that uses schemes of 4th-
order approximation with the Taylor expansion of the matrix exponential are listed in
Table 2, which are compared with the exact ones. Again, it is observed that the numerical
results are in good agreement with the exact ones.

4.2 Continuum eigenfunction of the Schrödinger equation

It may be assumed that the potential V(x) in the 1D time-independent Schrödinger equa-
tion (4.1) is an even function. For example, the Pöschl-Teller short-range potential V(x)=
−U0/cosh2(α0x) is an even function. It indicates that in quantum mechanics the contin-
uous spectrum is doubly degenerate when E >0, that is to say, for each desired value of
E > 0, the 1D time-independent Schrödinger equation (4.1) possesses two linearly inde-
pendent continuum eigen-functions (LICEF), and they may be chosen as the even parity
ψe(x) (even eigen-function) and odd parity (odd eigen-function) ψo(x), respectively. Let
ϕe(x) = ψ̇e(x) and ϕo(x) = ψ̇o(x). Then the necessary and sufficient condition for ψe(x)
and ψo(x) to be linearly independent is the Wronskian conservation, namely,

∣

∣

∣

∣

ψe(x) ϕe(x)
ψo(x) ϕo(x)

∣

∣

∣

∣

=const. 6=0.

Hence a Wronskian-preserving algorithm should be adopted for the computation of LICEF.

For each spatial point x, (ψe(x),ϕe(x))T
and (ψo(x),ϕo(x))T

are both two-dimensional
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Table 3: Wronskian of two linearly independent solutions of the Pöschl-Teller short-range potential (U0 =
0.7,α0 =0.4) for h=0.1 and E=0.01a.u.

x Explicit RK Explicit symplectic Exact values

0.0 1.0000000000 1.0000000000 1.0000000000

1.0 0.9999996362 1.0000000000 1.0000000000

2.0 0.9999994712 1.0000000000 1.0000000000

3.0 0.9999994303 1.0000000000 1.0000000000

4.0 0.9999994230 1.0000000000 1.0000000000

5.0 0.9999994218 1.0000000000 1.0000000000

vectors, their symplectic product is

[(ψe(x),ϕe(x))T
,(ψo(x),ϕo(x))T]

=(ψe(x),ϕe(x))

(

0 1
−1 0

)(

ψo(x)
ϕo(x)

)

=

∣

∣

∣

∣

ψe(x) ϕe(x)
ψo(x) ϕo(x)

∣

∣

∣

∣

, (4.20)

which is just the Wronskian of ψe and ψo, see, e.g., [67–69].
From the above analysis, for each desired eigen-energy E > 0 it can be assumed that

the two LICEF are ψe(x) and ψo(x), respectively. We only need to solve the canonical
equation (4.6) with the initial values

(ψe(0),ψ̇e(0))=(1,0) and (ψo(0),ψ̇o(0))=(0,1), (4.21)

in [0,∞), using the symplectic algorithm. We calculate the CEF ψe(x) and ψo(x) of the
1-D Pöschl-Teller short-range potential for E = 0.01a.u. and h = 0.1 and R = 500a.u., and
the numerical results are represented Fig. 16. In order to compare the results obtained
by the explicit symplectic algorithm with the ones by the explicit RK method, we list
some numerical values of Wronskian in Table 3. From this table, it can be seen that the
numerical values obtained by the explicit symplectic algorithm are almost equal to the
exact values, in contrast to those by the explicit RK method.

4.3 Two-dimensional time-independent Schrödinger equation

4.3.1 Symplectic and multi-symplectic form

In atomic units, the two-dimensional time-independent Schrödinger equation may be
written in the form

−1

2

∂2ψ

∂x2
− 1

2

∂2ψ

∂y2
+V(x,y)ψ=Eψ, (4.22)

ψ(x,±∞)=0, −∞< x<+∞, (4.23)

ψ(±∞,y)=0, −∞<y<+∞, (4.24)
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Figure 16: Even parity and odd parity CEF of Pöschl-Teller short-range potential.

where E is the energy eigenvalue, V(x,y) the potential, and ψ(x,y) the wave function.
Substituting the symmetry difference quotient for the partial derivative ∂2ψ/∂y2, and
considering the boundary conditions (4.23), we obtain, for −N+1≤ j≤N−1,

∂2ψ(x,yj)

∂x2
=− 1

∆y2
ψ(x,yj−1)−B(x,yj)ψ(x,yj)−

1

∆y2
ψ(x,yj+1), (4.25)

where B(x,yj)=2[E−V(x,yj)−1/∆y2]. If we let

ψ=[ψ(x,y−N+1),··· ,ψ(x,yN−1)]
T , ϕ= ψ̇=[ψ̇(x,y−N+1),··· ,ψ̇(x,yN−1)]

T, (4.26)

then Eq. (4.25) can be rewritten in matrix form as [70]

ϕ̇=−Sψ, ψ̇= ϕ, (4.27)

where the upper dot denotes the derivative with respect to x, S(x) is a (2N−1)-order
tridiagonal symmetric matrix, ST = S. Eq. (4.27) is the Hamiltonian canonical equation,
and its Hamiltonian function is

H =
1

2
zTCz=

1

2
ϕT ϕ+

1

2
ψTSψ. (4.28)

Set vx +wy+N′(ψ) = 0, v = ψx +py, w = ψy−px, wx−vy = 0, and N(ψ) = [V(x,y)−E]ψ2 .
Then the two-dimensional time-independent Schrödinger equation can be reformulated
in the multisymplectic Hamiltonian form

M
∂z

∂x
+K

∂z

∂y
=∇zS(z),
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Table 4: Eigenvalues of the two-dimensional harmonic oscillator.

Method2 Method3 Exact Method2 Method3 Exact

E0 1.000625 1.000104 1 E7 7.980570 8.000187 8

E1 1.999373 2.000102 2 E8 8.975551 9.000005 9

E2 2.998121 3.000100 3 E9 9.969271 10.000005 10

E3 3.995616 4.000096 4 E10 10.962991 11.000152 11

E4 4.993111 5.000098 5 E11 11.955448 12.000899 12

E5 5.989352 6.000068 6 E12 12.947904 12.999864 13

E6 6.985589 6.999995 7

where

M=









0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0









, K =









0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0









, z=









ψ
v
w
p









,

and S(z)=(v2+w2)/2+N(ψ). There are two symplectic structures, i.e.

ω1 =dv∧dψ+dp∧dw, ω2 =dw∧dψ+dv∧dp

and a multisymplectic scheme can be used to solve the Schrödinger equation [24, 25].

4.3.2 Two-dimensional eigenvalue problem

The one-dimensional SSSM can be easily extended to the calculations of the two-dimen-
sional eigenvalue problem. We can find the computational details from our previous
work [61, 70].

Recently, Simos and his collaborators [71–76] improved the numerical method for
solving the time-independent Schrödinger equation by using symplectic method. Mono-
vasilis et al. [76] improved the symplectic scheme-matrix eigenvalue method (SSMEM)
for the numerical solution of the two-dimensional time independent Schrödinger equa-
tion and presented a numerical method by third-order symplectic schemes. In their work,
the eigenvalue problem is transformed into an algebraic eigenvalue problem involving
real, symmetric, large sparse matrices. The application of the third-order symplectic
method to the two-dimensional eigenvalue problem gave an algebraic eigenvalue prob-
lem

(P+Eh2Q+E2h4R+E3h6S+E4h8F−E5h10Z)Ψ=0, (4.29)

where the coefficients P, Q, R, S, F, Z can be found in [76].
The potential of the two-dimensional harmonic oscillator is taken to be V(x,y)=(x2+

y2)/2. The exact eigenvalues of the two-dimensional harmonic oscillator are given by
En =n+1,n=nx+ny, (nx,ny=0,1, ···). The eigenvalues of the two-dimensional harmonic
oscillator obtained from method (4.29) are listed in Table 4, which is from [76]. We see
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that the 3rd-order symplectic method (Method 3) gives better results than the second-
order symplectic method (Method 2). It shows that the higher-order symplectic method
can produce more accurate results.

5 Interaction of atoms with intense laser field and the time-de-

pendent Schrödinger equation

With the development of laser techniques, laser-atom interaction has become one of the
very interesting topics [77, 78]. In recent years, a number of experiments on intense laser
pulses probing laser-atom interaction have produced many new results, such as multi-
photon ionization (MPI) rates, above-threshold ionization (ATI) and high-order harmonic
generation (HHG). The high-order harmonics up to the order 300 (with the maximum en-
ergy about 0.5keV) have been observed in recent experiments in helium atom [79], which
has been in the “water windows” range. Many theoretical works have been developed in
understanding laser-atom interaction. We give the asymptotic boundary conditions for
solving the time-dependent Schrödinger equation of atom in an intense laser field, and
study the behaviors and high-order harmonic generation for atoms in the intense laser
field in this section.

5.1 Mathematical model and asymptotic boundary condition

In the length gauge, the one-dimensional time-dependent Schrödinger equation of an
atom in a laser field reads (in atomic units)

i
∂

∂t
ψ(x,t)=

[

−1

2

∂2

∂x2
+V(x)−ε(t)x

]

ψ(x,t), t>0,x∈R, (5.1)

where V(x) is the short-range model potential. We add the laser-atom interaction in the
dipole approximation

ε(t)x= ε0 f (t)cos(ω0t)x,

where ε0 is the peak intensity of the laser field, f (t) is the function that describes the
temporal shape of the pulse, with the light assumed to be linearly polarized, and f (t)=
sin2(Ωt). The initial condition is set to be the ground state wavefunction ϕ(x).

Since the potential V(x) is short-range, it has monotonous attenuation with increasing
of |x|. If we omit the effect of the short-range potential in the sufficiently large distance,
Eq. (5.1) becomes

i
∂

∂t
ψ(x,t)=

[

−1

2

∂2

∂x2
−ε(t)x

]

ψ(x,t), t>0,x∈R. (5.2)

Eq. (5.2) can be solved by Fourier transformation methods [80,81]. Considering the phase
integral method [82], we can obtain the solution of Eq. (5.2) at x=±X0:

ψ(±X0,t)=exp(−iA(±X0)−iq/2)ϕ(±X0−α), (5.3)
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where X0 > 0 is a sufficiently large parameter, A(t)=−
∫ t

0 ε(t′)dt′ is the vector potential,

α(t) = −
∫ t

0 A(t′)dt′ and q(t) =
∫ t

0 A2(t′)dt′. We call Eq. (5.3) the asymptotic boundary
conditions for solving the Schrödinger equation (5.1).

5.2 Symplectic discretization based on asymptotic boundary conditions

Let ψ(x,t)= q(x,t)+ip(x,t) and U(x,t)= V(x)−ε(t)x. The interval (−X0,X0) can be di-
vided into 2N equal segments, and the length of each segment is h = X0/N. By using
the asymptotic boundary condition (5.3), and substituting the symmetry difference quo-
tient for the partial derivative, Eq. (5.1) can be discretized into the (2N−1)-dimensional
Hamiltonian canonical equation [80, 81],

Ṗ=−SQ+Y2, Q̇=SP−Y1, (5.4)

where P and Q are two column vectors formed with values of different space nodes, Y1=
(2h2)−1(p−N ,0,··· ,0,pN)T, Y2=(2h2)−1(q−N ,0,··· ,0,qN)T, and S is a tridiagonal-symmetric
matrix [80]. The Hamiltonian function of the canonical equation (5.4) is

H(P,Q,t)=
1

2
PTSP+YT

2 P+
1

2
QTSQ+YT

1 Q= H1(P,t)+H2(Q,t). (5.5)

The Hamiltonian system contains explicitly the time variable, which is similar to system
(2.38); thus, an explicit symplectic scheme can be used to solve it. This discretization
method is called the symplectic discretization based on the asymptotic boundary condi-
tion.

5.3 Symplectic discretization based on the eigenfunction expansion

Another approach to the solution of Eq. (5.1) is to expand ψ(x,t) in terms of the bound
eigenfunctions ϕj and the continuum eigenfunctions φε:

ψ(x,t)=∑
j

(aj(t)+ibj(t))ϕj+
∫ ∞

−∞
(cε(t)+idε(t))φεdε, (5.6)

where ϕj and φε can be obtained by the method presented in Section 4. Here j denotes the
sum for all the bound states, ε denotes the integration over all the continuum states. The
two bound states satisfy the relation

∫ ∞

−∞
ϕi(x)ϕj(x)= δij, and the two continuum states

in the meaning of the δ-function satisfy the relation

∫

△
dε
∫ ∞

−∞
φε′(x)φε(x)dx=

{

0 ε′ outside △,
1 ε′ inside △.

They also satisfy the orthogonality relation
∫ ∞

−∞
ϕiφεdx = 0. The expansion coefficients

can be found by mocking up the continuum by means of a set of pseudo-discrete spec-
tra, thereby converting the mixed discrete-continuum problem into what is formally a
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purely discrete problem [83]. In order to mock up the continuum as a set of discrete
states we first divide the desired energy range [0,Emax] of the continuum up into differ-
ent segments. If [0,Emax] is divided into [0,ε1],··· [ε i−1,ε i],··· ,[εk−1,Emax] and the ith energy
segment is ∆i, with ∑

k
i=1∆i =EM, then the value of ∆i must be chosen as a compromise be-

tween the adequate resolution of continuum detail and the limitation on the computation
in order to decrease the use of the computer RAM and the CPU time. If the ith pseudo-
discrete energy is ε i and its corresponding eigenfunction is φε i

, then the formulation (5.6)
transforms to

ψ(x,t)=∑
j

(aj(t)+ibj(t))ϕj+
k

∑
i=1

∆i(cε i
(t)+idε i

(t))φε i
. (5.7)

Let c̃ε i
(t)=

√
∆icε i

(t), d̃ε i
(t)=

√
∆idε i

(t), φ̃ε i
=
√

∆iφε i
. Thus the formula (5.7) can be rewrit-

ten as

ψ(x,t)=∑
j

(aj(t)+ibj(t))ϕj+
k

∑
l=1

(c̃ε l
(t)+id̃ε l

(t))φ̃ε l
. (5.8)

Inserting (5.8) into (5.1) and integrating the resulting equation over ϕl, where ϕl is ergodic
including all of the discrete states and the pseudo-discrete states, yield































































ȧl =
[

Elbl +∑
j

bj<ϕl|V|ϕj>+
k

∑
i=1

d̃ε i
<ϕl|V|φ̃ε i

>

]

,

˙̃cε l
=
[

ε l d̃ε l
+∑

j

bj<φ̃ε l
|V|ϕj>+

k

∑
i=1

d̃ε i
<φ̃ε l

|V|φ̃ε i
>

]

,

ḃl =−
[

Elal +∑
j

aj<ϕl|V|ϕj>+
k

∑
i=1

c̃ε l
<ϕl|V|φ̃ε i

>

]

,

˙̃dε l
=−

[

ε l c̃ε l
+∑

j

aj<φ̃ε l
|V|ϕj>+

k

∑
i=1

c̃ε l
<φ̃ε l

|V|φ̃ε i
>

]

.

(5.9)

Let

A=







discrete
−−−−−−−
a1,··· ,and

,

continuum
−−−−−−−−−−

c̃ε1
,··· , c̃εnc







T

, B=







discrete
−−−−−−−
b1,··· ,bnd

,

continuum
−−−−−−−−−−

d̃ε1
,··· ,d̃εnc







T

,

ED =[El] be the discrete eigenmatrix, EC =[ε i] be the pseudo-discrete eigenmatrix, VDD =
[<ϕl|V|ϕj>] be the matrix between the discrete states, VDC =[<ϕl|V|φ̃ε i

>] be the matrix
between the discrete states and the pseudo-discrete states, VCD = [<φ̃ε i

|V|ϕj>] be the
matrix between the pseudo-discrete states and the discrete states, and VCC=[<φ̃ε i

|V|φ̃ε i
>]

be the matrix between the pseudo-discrete states, where nd and nc are the numbers of
the discrete states and the pseudo-discrete states, respectively. We have VDC = (VCD)T.
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Inserting these quantities into (5.9), we obtain the Hamiltonian equation

Ȧ=

[

ED +VDD VDC

(VDC)T EC+VCC

]

B, Ḃ=−
[

ED +VDD VDC

(VDC)T EC+VCC

]

A, (5.10)

whose Hamiltonian function is

H(A,B,t)=
1

2
ZTCZ=

1

2

(

AT,BT
)

(

S 0
0 S

)(

A
B

)

=
1

2
ATSA+

1

2
BTSB= H2(A,t)+H1(B,t).

(5.11)

The system (5.11) is a Hamiltonian system containing explicitly the time variable, which
is similar to system (2.38). Thus an explicit symplectic scheme can be used to solve it.

This discretization method is called the pseudo-discrete approximation or pseudo-
spectrum expansion based on the numerical eigenfunction.

5.4 Harmonic generation for atoms in intense laser field

5.4.1 The Pöschl-Teller potential

The 1-D Pöschl-Teller (P-T) short-range potential can be written as

V0(x)=−U0/cosh2(α0x), (5.12)

which possesses the following properties:

1. V0(x) is an even function, namely, V0(−x)=V0(x);

2. |V0(x)| falls off exponentially as |x| increases;

3. There is a finite number of bound levels for given parameters U0 and α0.

5.4.2 Hydrogen atom (H) and Helium ion (H+
e )

When the atom moves in the linear-polarized laser field, the soft-core potential

V0(x)=−Z/
√

x2+α2 (5.13)

is adopted, where α and Z are introduced to remove the singularity at the origin and to
adjust the depth of the potential well. We point out that most properties of a real atom
can be reproduced by adjusting the parameters α and z, for example, α=

√
2, Z=1 for the

1-D H atom, and α=0.5, Z=2 for the 1-D H+
e . The potential (5.13) possesses the following

properties:

1. V0(x) is an even function;

2. V0(x)≈1/|x| for sufficiently large |x|; this will ensure the Coulomb behavior near
and above the ionization threshold;

3. |V0(x)| falls off monotonously and trends to zero with increasing |x|.
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5.4.3 High-order harmonic generation for 1-D H+
e in the two-color laser field

The high-order harmonic of the 1-D H+
e in the intense two-color laser field was illustrated

by the numerical method based on the asymptotic boundary condition. Fig. 17(a) shows
that the 1-D H+

e in the laser field for the intensity E0 = 0.336a.u. and the pulse T = 5 f s
can generate up to 500th-order harmonic but the conversion efficiency of the harmonic
is very low. It has been demonstrated theoretically and experimentally that an intense
two-color laser pulse can be used to enhance the harmonic efficiency [84].

Figs. 17(b)-(d) show that the harmonics of 1-D H+
e subject to the two-color laser pulse

are enhanced. To analyze the reason, we calculated the population of the ground state
and the first excited state of 1-D H+

e subject to the two-color laser field. From Fig. 18 and
Fig. 19, we can see that the population of the ground state has a significant decrease and
the population of the first excited state has a significant increase when the two-color laser
pulses with the high frequency were used. These phenomena can be explained as follows:
the ionization is enhanced and the channel of the transition to the even continuum state
is more unobstructed when the atom is subjected to the two-color laser pulse, as reported
in [85].

5.4.4 Multi-photon ionization, above-threshold ionization, Rabi oscillation and os-

cillation excitation of 1-D model atom in the intense laser field

A. Ionization behavior for the P-T potential with one bound state

For U0 = 1 and α0 = 1, there is only one bound state with eigenenergy E0 =−0.5a.u.
for the P-T potential (5.12), and the corresponding normalized eigenfunction ϕo(x) =
1/(

√
2coshx), which is chosen as the initial input. The laser field ε(t)x = ε0xsin(ω0t) is

linear polarized.
Fig. 20 shows the evolution of the normalization of the wave function in the range

[−50a.u.,50a.u.] for laser intensity ε0 = 0.1a.u., the boundary is chosen as 600a.u., and
the time is after 16 optical periods pulse. In this calculation, we choose the frequency
ω0 =0.2a.u.. Fig. 20(a) is identical to Fig. 2 of [85], which shows that the ABC presented
is reasonable for the interaction between the laser and the atom. The difference of the
absolute value of the wave functions between the boundaries imposed on 600a.u. and
700a.u. is shown in Fig. 20(b), whose maximum is within the numerical computing error
10−4. In Fig. 20(c), the normalization of the wave function is greater than 1 at a few points
but does not exceed 10−11, which is far less than the numerical error 10−4, and less than
1 at most points. This result shows that there are some probabilities for electrons to be
ionized into the free electron and they cannot be recombined to the parent atom.

The ionization probability of the electron is computed for the P-T potential in the
laser field. The results are given in Fig. 21. The probability density of the electronic wave
function

P(x,T)= |ψ(x,T)|2

is evaluated and shown in Fig. 22. The ionization curve in Fig. 21 is identical to Fig. 6
of [84] and Fig. 3 of [85], which further shows that the ABC presented in this paper is
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Figure 17: Harmonic spectrum irradiated by the different laser field parameter.

Figure 18: Probabilities of H+
e ground state irradiated by both of monochromic laser field (ω0 =0.055a.u.) and

two-color (17ω0) laser field.
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Figure 19: (a) Probabilities of H+
e first excited state irradiated by the monochromic laser field ω0 =0.055a.u.;

(b) probabilities of H+
e first excited state irradiated by the two-color laser field ω1 =17ω0.
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Figure 20: (a) Numerical solution |ψ(x)| after 16 light periods for ε0 = 0.1a.u. and ω0 = 0.2a.u.; (b) Relative

difference in units of 10−5 between the truncated solutions with boundaries at x=±600a.u. and x=±700a.u.;
(c) The normalization of wave function for x=±700a.u..

reasonable and the symplectic algorithm is stable for the interaction between the laser
and atom. The extrema points on the ionization curves correspond to the suppression of
3-photon ionization (A) and 4-photon ionization (B), respectively, the reason being that
when

nω0 < |E0|+Up, Up = ε2
0/4ω2

0
,

n-photon ionization is suppressed. Furthermore, it is seen that the ionization curves are
similar for different pulse width, but the ionization amplitude is different. The longer the
laser pulse width, the larger the ionization amplitude. It is observed from Fig. 22 that the
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Figure 21: The ionization probability with the laser
peak intensity after four (◭), eight (⋆) and six-
teen (•) light periods for the monochromatic with
frequency ω0 =0.2a.u..

Figure 22: Probability density of wave function with
the peak value of the laser intensity

Figure 23: Rabi oscillation: (a) irradiated by the approximate Gauss pulse and (b) irradiated by the rectangular
pulse.

wave function spreads outside both boundaries with the increasing of the laser intensity.
The stronger the laser intensity is, the more widely the wave function spreads.

B. P-T Potential with Three Bound States

The P-T potential (5.12) for the parameters U0=0.7,α0 =0.4 possesses the three bound
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Figure 24: Population of the ground state, the first excited state, the second excited state and the ionization
continuum in the laser field for the different laser pulse-shape: (a), (c), (e) and (g) irradiated by the approximate
Gauss pulse, (b), (d), (f) and (h) irradiated by the rectangular pulse.
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states, whose eigenenergies and corresponding normalized eigenfunctions are

E0 =−0.5a.u., E1 =−0.18a.u., E2 =−0.02a.u,

ϕ0(x)=
4√
15π

(cosh(α0x))−2.5,

ϕ1(x)=
4√
5π

(cosh(α0x))−1.5tanh(α0x),

ϕ2(x)=

√

6

5π

[

(cosh(α0x))−0.5− 4

3
(cosh(α0x))−2.5

]

,

respectively. The ionization behaviors of the P-T potential are computed in the laser fields

ε(t)=

{

ε0sin(ω0t) (ton ≤ t≤NT0),
0 (NT0 ≤ t≤ to f f ),

and

ε(t)=

{

ε0sin2(ω0t/2N)sin(ω0t) (ton ≤ t≤NT0),
0 (NT0≤ t≤ to f f ),

respectively, where T0 = 2π/ω0 is the optical period of the laser field. In the following
calculation, 15 optical periods are chosen as the pulse width, the ground state ϕ0(x) of the
P-T potential as the initial input, and the laser frequency is chosen as the Rabi oscillation
frequency between the ground state and the first excited state, which is ω0 =0.32a.u..

(1): Rabi oscillation between the ground state and the first excited state.

When the laser intensity is weaker, the Rabi oscillation between the ground state and the
first excited state will be the dominant process, and the transition rate between these en-
ergy levels will speed with the increase of the laser intensity, as shown in Fig. 23. This
result is identical to that of the perturbation theory in traditional quantum mechanics.
The oscillation depends strongly on the pulse-shape, and is suppressed faster for the
rectangular pulse-shape than for the approximate Gauss pulse-shape with the increase of
the laser intensity.

(2): Population probability of each state for different pulse-shapes. With
the increase of the laser intensity, the effect of Rabi oscillation is weakened gradually
and the ionization is strengthened; hence, the electron reaches directly the ionized con-
tinuum state by multi-photon ionization or tunneling ionization as well as over-barrier
ionization. The population probability of the bound states

Pi(t)= |<ϕi(x)|ψ(x,t)>|2

changes with the laser intensity for both the rectangular pulse-shape and the approximate
Gauss pulse-shape, as shown in Fig. 24, which illustrates that the population probability
of the bound states depends obviously on the pulse-shape. The probability of the elec-
tron recombination is greater for the approximate Gauss pulse-shape than the rectangu-
lar pulse-shape, and the population of the bound electron is greater for the approximate
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(a) (b) (c)

Figure 25: The ionization probability in the laser field: (a) irradiated by the approximate Gauss pulse, (b)
irradiated by the rectangular pulse; and (c) for the two pulse-shapes.

Gauss pulse-shape than the rectangular pulse at the end of the laser pulse-shape at the
time after the pulse.

The population probability of the continuum state is

Pc(t)=1−∑
i

Pi(t),

where the summation is over all the bound states and the result is also exhibited in Fig. 24.
From this figure we can see that the ionization is strengthened with increasing laser inten-
sity. In particular when the laser intensity reaches the critical intensity of 0.0625a.u., the
electron can freely go through the potential barrier and be ionized, which is called over-
barrier ionization. When the laser intensity is greater than this value, the population of
the continuum will be greater than that of the bound states, and thus the ionization will
be the dominant process.

(3): Ionization probability for different pulse-shapes. The ionization proba-
bility is

Pion(t)=1−
n

∑
i

Pi(t)=1−
n

∑
i

|<ϕi(x)|ψ(x,t)>|2.

Fig. 25 shows that the ionization probability changes with time and the laser intensity
for the two different pulse-shapes, Fig. 25(a) the approximate Gauss pulse-shape and
Fig. 25(b) the rectangular pulse-shape. Fig. 25(c) is the curve of the ionization probability
in the laser field at the time after the pulse. The figures illustrate that the ionization
probability depends on the laser pulse-shape, but the total ionization trend is similar and
the ionization amplitude is different for different pulse-shapes.

(4): Probability density of the ionization continuum state with the laser
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(a) (b)

Figure 26: The ionization probability in the laser field: (a) irradiated by the approximate Gauss pulse, (b)
irradiated by the rectangular pulse.

intensity. The probability density of the continuum state is

ρc = |ψ∗
c (x,t)ψc(x,t)|,

where ψc(x,t)=ψ(x,t)−∑i<ϕi(x)|ψ(x,t)>ϕi(x) is the wave function of the ionized con-
tinuum state and the summation is over all the bound states. The curve of the probability
density of the ionized continuum state in the laser field is displayed in Fig. 26; it illus-
trates that the spread of the electron is enhanced with the increase of the laser intensity
in the space. The electron spreads more widely for the rectangular pulse-shape than the
approximate Gauss pulse-shape.

The ionization and the recombination of the electron induced by the laser field de-
pend obviously on the laser pulse-shape, which is the reason why the different pulse-
shapes are adopted for the different physical problems. The rectangular pulse is adopted
for the research on the ionization, because the electrons are ionized more for the rectan-
gular pulse than the approximate Gauss pulse. However, the approximate Gauss pulse
is adopted for the research on the high harmonic generation, because the high harmonic
generation needs the electronic recombination process and the recombination probability
is greater more for the approximate Gauss pulse than the rectangular pulse.

6 Conclusions

The symplectic methods are difference methods that preserve the symplectic structure. In
this article, we have reviewed the applications of the symplectic methods for the classical
Hamiltonian systems in quantum systems. Below we briefly summarize the main points
of this work.

• Symplectic schemes for solving Hamiltonian systems are illustrated; explicit sym-
plectic schemes for linear separate Hamiltonian systems and tailored to time-depend-
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ent Hamiltonian functions, the Euler-centered scheme and symplectic Runge-Kutta
scheme for a general Hamiltonian system are given.

• The classical theory and classical trajectory method is illustrated. The classical trajec-
tories of a model molecule A2B and diatomic system is calculated by means of sym-
plectic and Runge-Kutta methods; the computation of quasiclassical trajectories for
the N(4S)+O2(X3Σ−

g )→NO(X2Π)+O(3P) atmospheric reaction system is presented
by means of both symplectic and Runge-Kutta methods. Comparisons are given. We
show that symplectic methods are better methods in the calculation of classical tra-
jectories of molecular systems. The classical dynamics of a molecular system in an
intense laser field are studied by means of symplectic; the time-evolution of survival,
dissociation, ionization and Coulomb explosion probability of H+

2 in an intense laser
field is analyzed.

• The symplectic schemes are extended to the numerical solution of the time-inde-
pendent Schrödinger equation. We first transform the Schrödinger equation into a
Hamiltonian canonical equation by using the Legendre transformation, and then in-
troduce the symplectic scheme-shooting method (SSSM) to obtain the eigenvalues of
the time-independent Schrödinger equation. Numerical methods based on the Mag-
nus expansion and computations of the continuum eigenfunctions of the Schrödinger
equation are also discussed.

• Asymptotic boundary conditions for solving the time-dependent Schrödinger equa-
tion of an atom in an intense laser field are given; symplectic discretizations based on
the asymptotic boundary condition and the numerical eigenfunction expansion are
implemented; and the multi-photon ionization, above-threshold ionization, Rabbi os-
cillation and high-order harmonic generation of laser-atom interaction are discussed.
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