
Commun. Comput. Phys.
doi: 10.4208/cicp.290811.050412a

Vol. 13, No. 4, pp. 1134-1150
April 2013

High-Order Interpolation Algorithms for Charge

Conservation in Particle-in-Cell Simulations

Jinqing Yu1,2, Xiaolin Jin1, Weimin Zhou2, Bin Li1,∗ and
Yuqiu Gu2,∗

1 Vacuum Electronics National Laboratory, University of Electronic Science and
Technology of China, Chengdu 610054, China.
2 Research Center of Laser Fusion, China Academy of Engineering Physics,
Mianyang 621900, China.

Received 29 August 2011; Accepted (in revised version) 5 April 2012

Communicated by Song Jiang

Available online 21 September 2012

Abstract. High-order interpolation algorithms for charge conservation in Particle-in-
Cell (PIC) simulations are presented. The methods are valid for the case that a particle
trajectory is a zigzag line. The second-order and third-order algorithms which can be
applied to any even-order and odd-order are discussed in this paper, respectively. Sev-
eral test simulations are performed to demonstrate their validity in two-dimensional
PIC code. Compared with the simulation results of one-order, high-order algorithms
have advantages in computation precision and enlarging the grid scales which reduces
the CPU time.

PACS: 02.60.-x, 52.65.Rr, 52.65.-y

Key words: High-order algorithms, charge conservation, PIC code, CPU time.

1 Introduction

Particle-in-cell (PIC) codes are widely used in plasma physics and astrophysics because
it is simple and straightforward. It is well known that PIC method can be carried out by
solving continuity equation instead of Poisson equation [1].

There are several techniques for satisfying the continuity equation [1–7], which are
called ”charge conservation methods”. In references [4–6], the authors introduced a
charge conservation method for simple shapes of quasi-particles. As described in ref-
erences [2, 3], the particle trajectories were divided into straight line segments between

∗Corresponding author. Email addresses: yujinqing5480@sina.com (J. Q. Yu), jinxiaolin@uestc.edu.cn
(X. L. Jin), zhouweimin@gmail.com (W. M. Zhou), libin@uestc.edu.cn (B. Li), yqgu@caep.ac.cn (Y. Q. Gu)

http://www.global-sci.com/ 1134 c©2013 Global-Science Press

J. Q. Yu et al. / Commun. Comput. Phys., 13 (2013), pp. 1134-1150 1135

the start and end points. The current density was assigned to each segment and then
charge conservation could be achieved for each particle trajectories. In references [1], the
author developed a method of density decomposition in Cartesian geometry, which was
a new charge conservation method. The method was valid for arbitrary form-factor of
particles.

Umeda developed methods for first-order [7] and second-order [8] spline interpola-
tion. In Umeda’s methods, a particle trajectory was assumed to be a zigzag line in one
time step. The methods could be used without any ”IF” statements, which enhanced the
speed of computation without any substantial distortion of physics. The method for first-
order is widely used in PIC codes because of its simple and straightforward. The method
used in second-order spline interpolation is not as simple and straightforward as the
method used in first-order. It is well known that higher-order algorithms can reduce the
numerical noises and increase the sizes of grid scales [9]. In this paper, we develop two
new methods of higher-order algorithm for the condition of a particle trajectory assumed
to be a zigzag line in one time step and can also be used without any ”IF” statements to
enhance the speed of computation, which are simple and straightforward. The methods
can be applied to any even-order and odd-order, respectively. And the validity is checked
by comparing the results of the two methods with one-order method.

This paper is organized as follows: in Section 2, the zigzag scheme for second-order
which can be expanded to any even-order is presented. In Section 3, the zigzag scheme
for third-order which can be expanded to any odd-order is considered. In order to check
the usability of our algorithms, we compare the simulation results of high-order with the
case of one-order in Section 4. The conclusions are summarized in Section 5.

2 Zigzag scheme for second-order spline interpolation

Let us consider the continuity equation in finite differences [1] and reduce it to two di-
mensions, which can be written as

ρt+∆t(j,k)−ρt(j,k)

dt
+

J
t+ ∆t

2
x (j+ 1

2 ,k)+ J
t+ ∆t

2
x (j− 1

2 ,k)

dx

+
J

t+ ∆t
2

y (j,k+ 1
2)+ J

t+ ∆t
2

y (j,k− 1
2)

dy
=0. (2.1)

Here dx and dy are the grid spaces and dt stands for one time step. The charge density ρ

is made up of form-factors of particles

ρ(j,k)=∑
i

qiSj,k(xi,yi). (2.2)

Here qi, Sj,k(xi,yi) are the charge and form-factor of the ith particle. When a particle move

from a location of (xt,yt) to another, which can be written as (xt+∆t,yt+∆t) and they are

1136 J. Q. Yu et al. / Commun. Comput. Phys., 13 (2013), pp. 1134-1150

related as

xt+∆t= xt+v
t+ ∆t

2
x dt, yt+∆t=yt+v

t+ ∆t
2

y dt. (2.3)

xt, xt+∆t, yt and yt+∆t are scaled to dx and dy. Then we can get the normalized values:

xold =
xt

dx
, yold =

yt

dy
, (2.4a)

xnew=
xt+∆t

dx
, ynew =

yt+∆t

dy
. (2.4b)

We define

j1=[xold+1.5], k1=[yold+1.5], (2.5a)

j2=[xnew+1.5], k2=[ynew+1.5], (2.5b)

where j1, k1, j2 and k2 are the largest integer values not greater than xold+1.5, yold+1.5,
xnew+1.5 and ynew+1.5 and denote the nearest grid space numbers away from xold, yold,
xnew and ynew. We assume that the particle does not move more than one grid space in
one time step, which means vxdt< dx and vydt< dy. A point (xr,yr) has been defined,
which locates between the locations of (xold,yold) and (xnew,ynew). The move progress can
be divided into the moves in x-direction and y-direction. As a matter of convenience,
we only discuss the move progress in x-direction, by which way the move progress in
y-direction can be considered. In x-direction, we need think of the following cases:

(1) A particle moves less than a grid space and does not across the midpoint of j1 and
j1+1, which can be seen in Fig. 1. Here xold and xnew denote the locations at the
time t and t+dt, respectively. Under this condition, the point xr can be expressed as
xr =(xold+xnew)/2.0. The move progress can be separated into two parts. The first
progress is from xold and xr and the other is from xr to xnew. The charge flux only
contributes to the points j1−1, j1 and j1+1 in the first progress, while in the second
the charge flux contributes to the points j2−1, j2 and j2+1.

(2) A particle moves across the midpoint of the grid shown in Fig. 2. The locations of
the particle at t and t+dt locate the two side of the midpoint. The point xr can be
expressed as xr = j1−0.5 or xr = j2−1.5. The move progress can be separated into
the part of from xold and xr and the part of from xr to xnew. The charge flux only
contributes to the points j1−1, j1 and j1+1 in the first part, while in the second part,
the charge flux contributes to the points j2−1, j2 and j2+1.

In y-direction, the move progress can be considered by the same methods above. The
particle trajectories of zigzag method in two dimensional for any even-order interpola-
tion can be described in Fig. 3. While in the second-order interpolation method of Umeda,

J. Q. Yu et al. / Commun. Comput. Phys., 13 (2013), pp. 1134-1150 1137

Figure 1: Location of the particle at t and t+dt of Case (1).

Figure 2: Location of the particle at t and t+dt of Case (2).

Figure 3: The particle trajectories of zigzag method in two dimensional under the condition of any even-order
interpolation.

the point (xr,yr) can be expressed as follows [8]:

xr =











x1+x2

2
, (j1= j2),

(j1+ j2)∆x

2
, (j1 6= j2),

yr =











y1+y2

2
, (k1= k2),

(k1+k2)∆y

2
, (k1 6= k2).

(2.6)

From the above argumentations, we can get the equations, which can be used to compute
the point (xr,yr),

xr =min[min(j1−0.5, j2−0.5),max(max(j1−1.5, j2−1.5),(xold+xnew)/2.0)], (2.7a)

yr =min[min(k1−0.5,k2−0.5),max(max(k1−1.5,k2−1.5),(yold+ynew)/2.0)]. (2.7b)

1138 J. Q. Yu et al. / Commun. Comput. Phys., 13 (2013), pp. 1134-1150

After getting the point (xr,yr), a charge flux qi(vx,vy) can be separated into F1=(Fx1,Fy1)
and F2=(Fx2,Fy2). Here Fx1, Fy1, Fx2 and Fy2 can be expressed as:

Fx1=qi(xr−xold)dx/dt, Fx2=qi(xnew−xr)dx/dt=qivx−Fx1, (2.8a)

Fy1=qi(yr−yold)dy/dt, Fy2=qi(ynew−yr)dy/dt=qivy−Fy1. (2.8b)

Here qi is the quantity of electric charge of the ith particle. We apply shape-factors defined
at the midpoints of (xold,yold) and (xr,yr) and (xr,yr) and (xnew,ynew), respectively. Under
the case of second-order spline interpolation, we define weighting functions wx1, wx2,
wx3, wy1, wy2 and wy3 for the midpoint of (xold,yold) and (xr,yr) and wx4, wx5, wx6, wy4,
wy5 and wy6 for the midpoint of (xr,yr) and (xnew,ynew), which can be expressed as follows
[9,10]:

wx1=0.125(2xx11−3.0)2, wx2=0.75−xx2
12, wx3=0.125(2xx13−3.0)2, (2.9a)

wy1=0.125(2yy11−3.0)2, wy2=0.75−yy2
12, wy3=0.125(2yy13−3.0)2, (2.9b)

and

wx4=0.125(2xx21−3.0)2
, wx5=0.75−xx2

22, wx6=0.125(2xx23−3.0)2
, (2.10a)

wy4=0.125(2yy21−3.0)2
, wy5=0.75−yy2

22, wy6=0.125(2yy23−3.0)2
. (2.10b)

Here xx11, xx12, xx13, xx21, xx22, xx23, yy11, yy12, yy13, yy21, yy22, yy23 are denoted as:

xx11 =(xold+xr)/2.0−(j1−2), (2.11a)

xx12 = |(xold+xr)/2.0−(j1−1)|, (0≤ xx12≤0.5), (2.11b)

xx13 = j1−(xold+xr)/2.0, (2.11c)

xx21 =(xnew+xr)/2.0−(j2−2), (2.11d)

xx22 = |(xnew+xr)/2.0−(j2−1)|, (0≤ xx22≤0.5), (2.11e)

xx23 = j2−(xnew+xr)/2.0, (2.11f)

yy11 =(yold+yr)/2.0−(k1−2), (2.11g)

yy12 = |(yold+yr)/2.0−(k1−1)|, (0≤yy12 ≤0.5), (2.11h)

yy13 = k1−(yold+yr)/2.0, (2.11i)

yy21 =(ynew+yr)/2.0−(k2−2), (2.11j)

yy22 = |(ynew+yr)/2.0−(k2−1)|, (0≤yy22 ≤0.5), (2.11k)

yy23 = k2−(xnew+xr)/2.0. (2.11l)

We define

j11=[xold+1.0], j22=[xnew+1.0], (2.12a)

k11 =[yold+1.0], k22 =[ynew+1.0]. (2.12b)

J. Q. Yu et al. / Commun. Comput. Phys., 13 (2013), pp. 1134-1150 1139

The equations remark that j11, j22, k11 and k22 are the grid numbers where xold, xnew, yold

and ynew locate. Then we can get the parts of the charge flux contributed to the grid points
by the following expressions

jx(k1−1, j11+0.5)=
1

∆x∆y
Fx1wy1, jx(k2−1, j22+0.5)=

1

∆x∆y
Fx2wy4, (2.13a)

jx(k1, j11+0.5)=
1

∆x∆y
Fx1wy2, jx(k2, j22+0.5)=

1

∆x∆y
Fx2wy5, (2.13b)

jx(k1+1, j11+0.5)=
1

∆x∆y
Fx1wy3, jx(k2+1, j22+0.5)=

1

∆x∆y
Fx2wy6, (2.13c)

jy(k11+0.5, j1−1)=
1

∆x∆y
Fy1wx1, jy(k22+0.5, j2−1)=

1

∆x∆y
Fy2wx4, (2.13d)

jy(k11+0.5, j1)=
1

∆x∆y
Fy1wx2, jy(k22+0.5, j2)=

1

∆x∆y
Fy2wx5, (2.13e)

jy(k11+0.5, j1+1)=
1

∆x∆y
Fy1wx3, jy(k22+0.5, j2+1)=

1

∆x∆y
Fy2wx6. (2.13f)

After getting the charge flux contributed by each particle, the total current densities can
be obtained. In any even-order spline interpolation, using the particle trajectories of
zigzag method used in the second-order spline interpolation can receive expression sim-
ilarly to Eq. (2.11) and then any even-order spline interpolation can be expanded to by
adopting correspondence weighting function (e.g., the method expanded to fourth-order
spline interpolation can be seen in Appendix A), but cannot be used in the case of odd-
order spline interpolation.

3 The case of third-order spline interpolation

We consider the condition of odd-order spline interpolation in this section. Third-order
condition is introduced as an example. The method used here can be expanded to any
odd-order cases. The relation between the initial and new location can be written as
Eq. (2.3) and the expressions of xold, xnew, yold and ynew are the same as Eq. (2.4). We
define

j1=[xold+1.0], k1=[yold+1.0], (3.1a)

j2=[xnew+1.0], k2=[ynew+1.0]. (3.1b)

Here j1, k1, j2 and k2 denote the grid space number where xold, yold, xnew and ynew lo-
cate. In the method of third-order spline interpolation, when a particle moves across the
cell mesh, the weighting will change. The same as described above, we assume a point
(xr,yr) and consider the move progress in x-dimension. The following cases should be
considered:

1140 J. Q. Yu et al. / Commun. Comput. Phys., 13 (2013), pp. 1134-1150

Figure 4: Location of the particle at t and t+dt of Case (1).

Figure 5: Location of the particle at t and t+dt of Case (2).

(1) A particle moves less than a grid space and does not move across the cell mesh,
which can be seen in Fig. 4. Under this case, the point xr can be written as xr =
(xold+xnew)/2.0. The progress can be separated into two parts. One is from xold to
xr and the other is from xr to xnew. The charge flux only contributes to the points
j1−1, j1, j1+1 and j1+2 in the first progress, while the second contributes to the
points j2−1, j2, j2+1 and j2+2.

(2) A particle moves across the cell mesh as shown in Fig. 5. At this time, xold and xnew

locate at the two side of the grid. The point xr can be expressed as xr =(j1+1)−1.0
or xr = j2−1.0. We can separate the progress into two parts. One is from xold to xr

and the other is from xr to xnew. The charge flux only contributes to the points of
j1−1, j1, j1+1 and j1+2 in the first progress, while the second contributes to the
points of j2−1, j2, j2+1 and j2+2.

Figure 6: The particle trajectories of zigzag method in two dimensional under the condition of any odd-order
interpolation.

J. Q. Yu et al. / Commun. Comput. Phys., 13 (2013), pp. 1134-1150 1141

After getting the move progress in x-direction, we can obtain the condition in y-
direction by the same way. The particle trajectories of zigzag method in two dimensional
for any odd-order interpolation can be described in Fig. 6.

Then the point (xar,yar) can be computed from the following equations

xr =min[min(j1, j2),max(max(j1−1.0, j2−1.0),(xold+xnew)/2.0)], (3.2a)

yr =min[min(k1,k2),max(max(k1−1.0,k2−1.0),(yold+ynew)/2.0)]. (3.2b)

Here Fx1, Fy1, Fx2 and Fy2 are the same as Eq. (2.7). Under the case of third-order spline
interpolation, we define weighting functions wx1, wx2, wx3, wx4, wy1, wy2, wy3 and wy4 for
the midpoint of (xold,yold) and (xr,yr) and wx5, wx6, wx7, wx8, wy5, wy6, wy7 and wy8 for
the midpoint of (xr,yr) and (xnew,ynew), which can be expressed as follows [9, 10]:

wx1=(2.0−xx11)
3/6.0, wx2=(4.0−6xx2

12+3xx3
12)/6.0, (3.3a)

wx3=(4.0−6xx2
13+3xx3

13)/6.0, wx4=(2.0−xx14)
3/6.0, (3.3b)

wy1=(2.0−yy11)
3
/6.0, wy2=(4.0−6yy2

12+3yy3
12)/6.0, (3.3c)

wy3=(4.0−6yy2
13+3yy3

13)/6.0, wy4=(2.0−yy14)
3
/6.0, (3.3d)

wx5=(2.0−xx21)
3
/6.0, wx6=(4.0−6xx2

22+3xx3
22)/6.0, (3.3e)

wx7=(4.0−6xx2
23+3xx3

23)/6.0, wx8=(2.0−xx24)
3
/6.0, (3.3f)

wy5=(2.0−yy21)
3/6.0, wy6=(4.0−6yy2

22+3yy3
22)/6.0, (3.3g)

wy7=(4.0−6yy2
23+3yy3

23)/6.0, wy8=(2.0−yy24)
3/6.0. (3.3h)

xx11, xx12, xx13, xx14, xx21, xx22, xx23, xx24, yy11, yy12, yy13, yy14, yy21, yy22, yy23 and yy24

are denoted as:

xx11=1.0+xx12, xx12=(xold+xr)/2.0−(j1−1), (0≤ xx12 ≤1), (3.4a)

xx13=1.0−xx12, xx14=2.0−xx12, (3.4b)

xx21=1.0+xx22, xx22=(xold+xr)/2.0−(j2−1), (0≤ xx22 ≤1), (3.4c)

xx23=1.0−xx22, xx24=2.0−xx22, (3.4d)

yy11 =1.0+yy12, yy12 =(yold+yr)/2.0−(k1−1), (0≤yy12 ≤1), (3.4e)

yy13 =1.0−yy12, yy14 =2.0−yy12, (3.4f)

yy21 =1.0+yy22, yy22 =(ynew+yr)/2.0−(k2−1), (0≤yy22 ≤1), (3.4g)

yy23 =1.0−yy22, yy24 =2.0−yy22. (3.4h)

Then we can get the parts of the charge flux contributed to the grid points by the follow-
ing expressions:

jx(k1−1, j1+1.5)=
1

∆x∆y
Fx1wy1, jx(k2−1, j2+1.5)=

1

∆x∆y
Fx2wy5, (3.5a)

jx(k1, j1+1.5)=
1

∆x∆y
Fx1wy2, jx(k2, j2+1.5)=

1

∆x∆y
Fx2wy6, (3.5b)

1142 J. Q. Yu et al. / Commun. Comput. Phys., 13 (2013), pp. 1134-1150

jx(k1+1, j1+1.5)=
1

∆x∆y
Fx1wy3, jx(k2+1, j2+1.5)=

1

∆x∆y
Fx2wy7, (3.5c)

jx(k1+2, j1+1.5)=
1

∆x∆y
Fx1wy4, jx(k2+2, j2+1.5)=

1

∆x∆y
Fx2wy8, (3.5d)

jy(k1+1.5, j1−1)=
1

∆x∆y
Fy1wx1, jy(k2+1.5, j2−1)=

1

∆x∆y
Fy2wx5, (3.5e)

jy(k1+1.5, j1)=
1

∆x∆y
Fy1wx2, jy(k2+1.5, j2)=

1

∆x∆y
Fy2wx6, (3.5f)

jy(k1+1.5, j1+1)=
1

∆x∆y
Fy1wx3, jy(k2+1.5, j2+1)=

1

∆x∆y
Fy2wx7, (3.5g)

jy(k1+1.5, j1+2)=
1

∆x∆y
Fy1wx4, jy(k2+1.5, j2+2)=

1

∆x∆y
Fy2wx8. (3.5h)

If add up the charge flux contributed by each particle, we can obtain the total current den-
sities under the condition of third-order spline interpolation. In any odd-order spline in-
terpolation, using the particle trajectories of zigzag method used in the third-order spline
interpolation can receive expression similarly to Eq. (3.5) and then any odd-order spline
interpolation can be expanded to by adopting correspondence weighting function (e.g.,
the method expanded to fifth-order spline interpolation can be seen in Appendix B).

4 Application test

In order to test the algorithms, some simulations are performed. The application tests are
completed using fully relativistic electromagnetic PIC code, one-order code of which has
been successfully used in the interactions of laser and plasma [11]. The order for the fields
is the same as used for charge and charge flux in this paper. The tests are performed on a
PC with Dual Pentium(R) 2.20GHz processor. The velocity of hole boring and numerical
error under the condition of different order are tested, respectively.

The simulation condition of hole boring can be described as follows. The scales of
simulation box used here are XL×YL = 10λ0×10λ0 = 2823λDe×2823λDe with the time
step of 0.0125τ, the simulation duration of 70τ and the grid size of ∆X =∆Y = 0.03λ0 =
8.47λDe, where τ and λ0 = 1.06µm are the period and wavelength of laser pulse, λDe is
the Debye length of electron, respectively. 100 electrons (ions) are used in one cell. with
the total particles of 3.55×106. We considered a Gaussian p-polarized laser pulse with
duration of 10τ and focal spot of 4λ0. The laser introduces along the axis from the left.
The peak intensity is I0=3.5×1019W/cm2. The initial temperatures of electrons and ions
are 1.0keV and 0.1keV, respectively. A planar target with 4λ0∗8λ0 and density of 4nc is
considered. Here nc is the critical density, which is related to the frequency of the laser as
nc=mew

2
0/4πe2.

Hole boring [12] of laser pulse into plasma is a very important feature of laser-plasma
interaction. We perform the velocities of hole boring in the cases of first-, second- and

J. Q. Yu et al. / Commun. Comput. Phys., 13 (2013), pp. 1134-1150 1143

Figure 7: Ion density distribution at the time of t= 70τ, (a) the simulation result of first-order case, (b) the
result of second-order case, (c) the result of third-order case.

third-order algorithms, while fixing other parameters. From Fig. 7, we can see the ion
density distributions under different-orders at the time of t = 70τ. The depths of the
holes are almost the same at the same time, which means using higher-order methods do
not affect the physics.

In order to study the advantages of high-order algorithm, we calculate the total en-
ergy vs. time without external-field. A 40nc with 2µm wide and 5µm thick plane target
is considered. First-order method under the condition of ∆x=∆y= 15.3λDe, ∆x=∆y=
18.3λDe and second-order with ∆x=∆y=15.3λDe , ∆x=∆y=24.5λDe and ∆x=∆y=45.9λDe

are simulated. The time steps are 0.025τ under the cases of ∆x = ∆y = 15.3λDe and
∆x=∆y=18.3λDe , 0.04τ under the cases of ∆x=∆y=24.5λDe and 0.05τ under the cases
of ∆x=∆y=45.9λDe. 900 electrons (ions) are used in one cell. The temperatures of elec-
trons and ions are 7.6keV. Fig. 8 shows the total energy vs. time. From Fig. 8, we can find
second-order algorithm can suppress numerical grid heating and allow increasing grid
size in PIC codes. Using second-order algorithm the grid sizes can be extended up to 46
Debye lengths without significant numerical heating over the time of 400fs. The second-

Figure 8: Total energy vs. time of 2λ0 wide and 5λ0 thick plane target, the grid scales are ∆x=∆y=15.3λDe=
0.05µm, ∆x=∆y=18.3λDe=0.06µm under the condition of first-order algorithm and ∆x=∆y=15.3λDe=0.05µm,
∆x=∆y=24.5λDe =0.08µm, ∆x=∆y=45.9λDe =0.15µm under the condition of second-order algorithm.

1144 J. Q. Yu et al. / Commun. Comput. Phys., 13 (2013), pp. 1134-1150

order method is very useful in calculating the efficiency of laser to plasma. Generally
speaking, numerical error mostly comes from the precision and the steps of computa-
tion. In the case of larger grid size, larger time step is adopted and smaller number of
computational steps is received and then smaller numerical error can be obtained; mean-
while, the precision of computation reduces as the expanding of the grid size will enlarge
the numerical error. On the other hand, reducing the grid size, the precision can be im-
proved. Meanwhile, larger number of computational steps will be consumed, which will
enhance the numerical error of repeated addition. In summary, under the condition of
second-order case, the result that the total energy of ∆x=∆y=15.3λDe is larger than that
of ∆x=∆y=24.5λDe after the time of 110τ shown in Fig. 8 is the outcomes of the above
two reasons.

Fig. 9(a) shows the total energy vs. different particles per cell of 2λ0 wide and 5λ0

thick plane target at the time of 400fs, the grid scales are ∆x=∆y= 30.7λDe for second-
order and ∆x = ∆y = 15.3λDe for first-order, respectively. Under the condition of first-
order, 900 electrons (ions) are used in one cell. In the case of second-order, 900, 1600,
2500, 3600 electrons (ions) are considered in one cell, respectively. From the figure, we
find that the energy conservation is better under the condition of more number of par-
ticles per cell. When the field is added, the energy conservation is better than the case
of without external-field. Fig. 9(b) shows the CPU time as a function of the number of
particle under the conditions of first-order and second-order, from which we can find
high-order algorithms have advantages in reducing the CPU time.

(a) (b)

Figure 9: (a) Total energy vs. different particles per cell of 2λ0 wide and 5λ0 thick plane target at the time
of 400fs, the grid scales are ∆x=∆y=30.7λDe =0.1µm for second-order and ∆x=∆y=15.3λDe =0.05µm for
first-order; (b) CPU time as a function of particles per cell at the time of 400fs.

Under the condition of third-order method, a 40nc with 20µm wide and 25µm thick
plane target is considered. The temperatures of electrons and ions are both 7.6keV. 10000
electrons (ions) are used in one cell. The grid sizes are extended to ∆x=∆y= 0.96µm=
293.7λDe. Compared with the result of second-order method with ∆x = ∆y = 0.3µm =
91.7λDe, as shown in Fig. 10, third-order algorithm can extend the grid sizes up to 294

J. Q. Yu et al. / Commun. Comput. Phys., 13 (2013), pp. 1134-1150 1145

Figure 10: Total energy vs. time under the conditions of different-order method.

Debye lengths without significant numerical heating over the time of 260fs, which indi-
cates that high-order method can enlarge the grid scales and reduce the CPU time.

5 Conclusions

In this paper, high-order algorithms for charge conservation in Particle-in-Cell (PIC) sim-
ulations are presented. The algorithms are valid for the case that a particle trajectory is a
zigzag line.

The method of second-order algorithm which can be applied to any even-order al-
gorithms is introduced. And the algorithm for third-order form-factor which can be ex-
panded to any even-order algorithms is also presented.

The algorithms in 2D-PIC code are tested and proved the usability of the methods.
The simulation results indicate that high-order algorithms can reduce the numerical noises,
increase the sizes of space grids and reduce the CPU time.

Acknowledgments

We are very glad to discuss with Dr. K. G. Dong, Dr. W. Fan, Dr. D. X. Liu, Dr. L. Wei,
Dr. H. P. Zang and Dr. Y. H. Yan. This work is supported by the National Natural Science
Foundation of China (Grant Nos. 10905009, 11174259, 11175165 and 10975121), the Doc-
torate Foundation of the Ministry of Education of China (Grant No. 200806141034) and
the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2010J052).

Appendix

A The method expanded to fourth-order spline interpolation

The weighting functions wx1, wx2, wx3, wx4, wx5, wy1, wy2, wy3, wy4 and wy5 for the mid-
point of (xold,yold) and (xr,yr) and wx6, wx7, wx8, wx9, wx10, wy6, wy7, wy8, wy9 and wy10 for

1146 J. Q. Yu et al. / Commun. Comput. Phys., 13 (2013), pp. 1134-1150

the midpoint of (xr,yr) and (xnew,ynew) can be expressed as follows:

wx1=
1

24

(5

2
−xx11

)4

,

wx2=
1

120
(51+75xx12−210xx2

12
+150xx3

12
−45xx4

12
+5xx5

12
),

wx3=
1

192
(115−120xx2

13+48xx4
13),

wx4=
1

120
(51+75xx14−210xx2

14
+150xx3

14
−45xx4

14
+5xx5

14
),

wx5=
1

24

(5

2
−xx15

)4

,

wy1=
1

24

(5

2
−yy11

)4

,

wy2=
1

120
(51+75yy12−210yy2

12
+150yy3

12
−45yy4

12
+5yy5

12
),

wy3=
1

192
(115−120yy2

13+48yy4
13),

wy4=
1

120
(51+75yy14−210yy2

14
+150yy3

14
−45yy4

14
+5yy5

14
),

wy5=
1

24

(5

2
−yy15

)4

,

wx6=
1

24

(5

2
−xx21

)4

,

wx7=
1

120
(51+75xx22−210xx2

22
+150xx3

22
−45xx4

22
+5xx5

22
),

wx8=
1

192
(115−120xx2

23+48xx4
23),

wx9=
1

120
(51+75xx24−210xx2

24
+150xx3

24
−45xx4

24
+5xx5

24
),

wx10=
1

24

(5

2
−xx25

)4

,

wy6=
1

24

(5

2
−yy21

)4

,

wy7=
1

120
(51+75yy22−210yy2

22
+150yy3

22
−45yy4

22
+5yy5

22
),

wy8=
1

192
(115−120yy2

23+48yy4
23),

wy9=
1

120
(51+75yy24−210yy2

24
+150yy3

24
−45yy4

24
+5yy5

24
),

wy10=
1

24

(5

2
−yy25

)

4

.

J. Q. Yu et al. / Commun. Comput. Phys., 13 (2013), pp. 1134-1150 1147

Here xx11, xx12, xx13, xx14, xx15, xx21, xx22, xx23, xx24, xx25, yy11, yy12, yy13, yy14, yy15,
yy21, yy22, yy23, yy24, yy25 are denoted as:

xx11=(xold+xr)/2.0−(j1−3), xx12=(xold+xr)/2.0−(j1−2),

xx13= |(xold+xr)/2.0−(j1−1)|, (0≤ xx13≤0.5),

xx14= j1−(xold+xr)/2.0, xx15= j1+1.0−(xold+xr)/2.0,

xx21=(xnew+xr)/2.0−(j2−3), xx22=(xnew+xr)/2.0−(j2−2),

xx23= |(xnew+xr)/2.0−(j2−1)|, (0≤ xx23≤0.5),

xx24= j2−(xnew+xr)/2.0, xx25= j2+1.0−(xnew+xr)/2.0,

yy11 =(yold+yr)/2.0−(k1−3), yy12 =(yold+yr)/2.0−(k1−2),

yy13 = |(yold+yr)/2.0−(k1−1)|, (0≤yy13 ≤0.5),

yy14 = k1−(yold+yr)/2.0, yy14 = k1+1.0−(yold+yr)/2.0,

yy21 =(ynew+yr)/2.0−(k2−3), yy22 =(ynew+yr)/2.0−(k2−2),

yy23 = |(ynew+yr)/2.0−(k2−1)|, (0≤yy23 ≤0.5),

yy24 = k2−(xnew+xr)/2.0, yy25 = k2+1.0−(xnew+xr)/2.0.

The expressions of xold, xr, xnew, yold, yr , ynew, j1, j2, k1, k2 can be seen in (2.4), (2.5) and
(2.7). We define

j11=[xold+1.0], j22=[xnew+1.0],

k11=[yold+1.0], k22=[ynew+1.0].

Then we can get the parts of the charge flux contributed to the grid points by the follow-
ing expressions:

jx(k1−2, j11+0.5)=
1

∆x∆y
Fx1wy1, jx(k2−2, j22+0.5)=

1

∆x∆y
Fx2wy6,

jx(k1−1, j11+0.5)=
1

∆x∆y
Fx1wy2, jx(k2−1, j22+0.5)=

1

∆x∆y
Fx2wy7,

jx(k1, j11+0.5)=
1

∆x∆y
Fx1wy3, jx(k2, j22+0.5)=

1

∆x∆y
Fx2wy8,

jx(k1+1, j11+0.5)=
1

∆x∆y
Fx1wy4, jx(k2+1, j22+0.5)=

1

∆x∆y
Fx2wy9,

jx(k1+2, j11+0.5)=
1

∆x∆y
Fx1wy5, jx(k2+2, j22+0.5)=

1

∆x∆y
Fx2wy10,

jy(k11+0.5, j1−2)=
1

∆x∆y
Fy1wx1, jy(k22+0.5, j2−2)=

1

∆x∆y
Fy2wx6,

jy(k11+0.5, j1−1)=
1

∆x∆y
Fy1wx2, jy(k22+0.5, j2−1)=

1

∆x∆y
Fy2wx7,

1148 J. Q. Yu et al. / Commun. Comput. Phys., 13 (2013), pp. 1134-1150

jy(k11+0.5, j1)=
1

∆x∆y
Fy1wx3, jy(k22+0.5, j2)=

1

∆x∆y
Fy2wx8,

jy(k11+0.5, j1+1)=
1

∆x∆y
Fy1wx4, jy(k22+0.5, j2+1)=

1

∆x∆y
Fy2wx9,

jy(k11+0.5, j1+2)=
1

∆x∆y
Fy1wx5, jy(k22+0.5, j2+2)=

1

∆x∆y
Fy2wx10.

B The method expanded to fifth-order spline interpolation

The weighting functions for the midpoint of (xold,yold) and (xr,yr) and for the midpoint
of (xr,yr) and (xnew,ynew) can be expressed as follows:

wx1=(3.0−xx11)
5
/120,

wx2=(51+75xx12−210xx2
12+150xx3

12−45xx4
12+5xx5

12)/120,

wx3=(33−30xx2
13+15xx4

13−5xx5
13)/60,

wx4=(33−30xx2
14+15xx4

14−5xx5
14)/60,

wx5=(51+75xx15−210xx2
15+150xx3

15−45xx4
15+5xx5

15)/120,

wx6=(3.0−xx16)
5/120,

wy1=(3.0−yy11)
5/120,

wy2=(51+75yy12−210yy2
12+150yy3

12−45yy4
12+5yy5

12)/120,

wy3=(33−30yy2
13+15yy4

13−5yy5
13)/60,

wy4=(33−30yy2
14+15yy4

14−5yy5
14)/60,

wy5=(51+75yy15−210yy2
15+150yy3

15−45yy4
15+5yy5

15)/120,

wy6=(3.0−yy16)
5/120,

wx7=(3.0−xx21)
5/120,

wx8=(51+75xx22−210xx2
22+150xx3

22−45xx4
22+5xx5

22)/120,

wx9=(33−30xx2
23+15xx4

23−5xx5
23)/60,

wx10=(33−30xx2
24+15xx4

24−5xx5
24)/60,

wx11=(51+75xx25−210xx2
25+150xx3

25−45xx4
25+5xx5

25)/120,

wx12=(3.0−xx26)
5
/120,

wy7=(3.0−yy21)
5
/120,

wy8=(51+75yy22−210yy2
22+150yy3

22−45yy4
22+5yy5

22)/120,

wy9=(33−30yy2
23+15yy4

23−5yy5
23)/60,

J. Q. Yu et al. / Commun. Comput. Phys., 13 (2013), pp. 1134-1150 1149

wy10=(33−30yy2
24+15yy4

24−5yy5
24)/60,

wy11=(51+75yy25−210yy2
25+150yy3

25−45yy4
25+5yy5

25)/120,

wy12=(3.0−yy26)
5/120,

where xx11, xx12, xx13, xx14, xx15, xx16, xx21, xx22, xx23, xx24, xx25, xx26, yy11, yy12, yy13,
yy14, yy15, yy16, yy21, yy22, yy23, yy24, yy25 and yy26 are denoted as:

xx11=2.0+xx13, xx12=1.0+xx13, xx13=(xold+xr)/2.0−(j1−1), (0≤ xx13 ≤1),

xx14=1.0−xx13, xx15=2.0−xx13, xx16=3.0−xx13,

xx21=2.0+xx23, xx22=1.0+xx23, xx23=(xold+xr)/2.0−(j2−1), (0≤ xx23 ≤1),

xx24=1.0−xx23, xx25=2.0−xx23, xx26=3.0−xx23,

yy11 =2.0+yy13, yy12 =1.0+yy13, yy13 =(yold+yr)/2.0−(k1−1), (0≤yy13 ≤1),

yy14 =1.0−yy13, yy15 =2.0−yy13, yy16 =3.0−yy13,

yy21 =2.0+yy23, yy22 =1.0+yy23, yy23 =(yold+yr)/2.0−(k2−1), (0≤yy23 ≤1),

yy24 =1.0−yy23, yy25 =2.0−yy23, yy26 =3.0−yy23.

The expressions of xold, xr, xnew, yold, yr , ynew, j1, j2, k1, k2 can be seen in (2.4), (3.1) and
(3.2). Then we can get the parts of the charge flux contributed to the grid points by the
following expressions:

jx(k1−2, j1+1.5)=
1

∆x∆y
Fx1wy1, jx(k2−2, j2+1.5)=

1

∆x∆y
Fx2wy7,

jx(k1−1, j1+1.5)=
1

∆x∆y
Fx1wy2, jx(k2−1, j2+1.5)=

1

∆x∆y
Fx2wy8,

jx(k1, j1+1.5)=
1

∆x∆y
Fx1wy3, jx(k2, j2+1.5)=

1

∆x∆y
Fx2wy9,

jx(k1+1, j1+1.5)=
1

∆x∆y
Fx1wy4, jx(k2+1, j2+1.5)=

1

∆x∆y
Fx2wy10,

jx(k1+2, j1+1.5)=
1

∆x∆y
Fx1wy5, jx(k2+2, j2+1.5)=

1

∆x∆y
Fx2wy11,

jx(k1+3, j1+1.5)=
1

∆x∆y
Fx1wy6, jx(k2+3, j2+1.5)=

1

∆x∆y
Fx2wy12,

jy(k1+1.5, j1−2)=
1

∆x∆y
Fy1wx1, jy(k2+1.5, j2−2)=

1

∆x∆y
Fy2wx7,

jy(k1+1.5, j1−1)=
1

∆x∆y
Fy1wx2, jy(k2+1.5, j2−1)=

1

∆x∆y
Fy2wx8,

jy(k1+1.5, j1)=
1

∆x∆y
Fy1wx3, jy(k2+1.5, j2)=

1

∆x∆y
Fy2wx9,

1150 J. Q. Yu et al. / Commun. Comput. Phys., 13 (2013), pp. 1134-1150

jy(k1+1.5, j1+1)=
1

∆x∆y
Fy1∗wx4, jy(k2+1.5, j2+1)=

1

∆x∆y
Fy2∗wx10,

jy(k1+1.5, j1+2)=
1

∆x∆y
Fy1∗wx5, jy(k2+1.5, j2+2)=

1

∆x∆y
Fy2∗wx11

jy(k1+1.5, j1+3)=
1

∆x∆y
Fy1∗wx6, jy(k2+1.5, j2+3)=

1

∆x∆y
Fy2∗wx12.

References

[1] T. Zh. Esirkepov, Exact charge conservation for particle-in-cell simulation with an arbitrary
form-factor, Comput, Phys. Commun., 135 (2001), 144–153.

[2] J. W. Eastwood, The virtual particle electromagnetic particle-mesh method, Comput. Phys.
Commun., 64 (1991), 252.

[3] J. W. Eastwood, W. Arter, N. J. Brealey and R. W. Hockney, Body-fitted electromagnetic PIC
software for use on parallel computers, Comput. Phys. Commun., 87 (1995), 155.

[4] R. L. Morse and C. W. Nielson, Numerical simulation of the Weibel instability in one and
two dimensions, Phys. Fluids, 14 (1971), 830.

[5] V. A. Vshivkov, M. A. Kraeva and V. E. Malyshkin, Parallel implementation of the particle-
in-cell method, Program. Comput. Software, 23(2) (1997), 87–97.

[6] J. Villasenor and O. Buneman, Rigorous charge conservation for local electromagnetic field
solvers, Comput. Phys. Commun., 69 (1992), 306.

[7] T. Umeda, Y. Omura, T. Tominaga and H. Matsumoto, A new charge conservation method
in electromagnetic particle-in-cell simulations, Comput. Phys. Commun., 156 (2003), 73–85.

[8] T. Umeda, Y. Omura, T. Tominaga and H. Matsumoto, Charge conservation methods for
computing cureent densities in electromagnetic particle-in-cell simulations, Proceedings of
ISSS-7, 26-31 March, 2005.

[9] H. Abe, N. Sakairi, R. Itatani and H. Okuda, High-order spline interpolations in the particle
simulation, J. Comput. Phys., 63 (1986), 247–267.

[10] C. K. Birdsall and A. B. Langdon, Plasma Physics Via Computer Simulation, Adam-HIkger,
1991.

[11] W. M. Zhou, Research on Laser Plasma Acceleration by Particle-in-Cell Simulation, Osaka
University, 2008.

[12] S. C. Wilks, W. L. Kruer, M. Tabak and A. B. Langdon, Absorption of ultra-intense laser
pulses, Phys. Rev. Lett., 69 (1992), 1383–1386.

