- Journal Home
- Volume 19 - 2024
- Volume 18 - 2023
- Volume 17 - 2022
- Volume 16 - 2021
- Volume 15 - 2020
- Volume 14 - 2019
- Volume 13 - 2018
- Volume 12 - 2017
- Volume 11 - 2016
- Volume 10 - 2015
- Volume 9 - 2014
- Volume 8 - 2013
- Volume 7 - 2012
- Volume 6 - 2011
- Volume 5 - 2010
- Volume 4 - 2009
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
J. Info. Comput. Sci. , 16 (2021), pp. 122-125.
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
This paper uses the finite difference method to numerically solve the space fractional nonlinear Schrodinger equation. First, we give some properties of the fractional Laplacian $Δ_h^\alpha.$ Then we construct a numerical scheme which satisfies the mass conservation law without proof and the scheme’s order is $o(\tau^2+h^2)$ in the discrete $L^\infty$ norm. Moreover, The scheme conserves the mass conservation and is unconditionally stable about the initial values. Finally, this article gives a numerical example to verify the relevant properties of the scheme.
}, issn = {3080-180X}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jics/22370.html} }This paper uses the finite difference method to numerically solve the space fractional nonlinear Schrodinger equation. First, we give some properties of the fractional Laplacian $Δ_h^\alpha.$ Then we construct a numerical scheme which satisfies the mass conservation law without proof and the scheme’s order is $o(\tau^2+h^2)$ in the discrete $L^\infty$ norm. Moreover, The scheme conserves the mass conservation and is unconditionally stable about the initial values. Finally, this article gives a numerical example to verify the relevant properties of the scheme.