TY - JOUR T1 - Double Phase Phenomena in Navier Boundary Problems with Degenerated $(p(.), q(.))$-Operators AU - Katit , Abdessamad El AU - Amrouss , Abdelrachid El AU - Kissi , Fouad JO - Journal of Nonlinear Modeling and Analysis VL - 4 SP - 1416 EP - 1430 PY - 2025 DA - 2025/07 SN - 7 DO - http://doi.org/10.12150/jnma.2025.1416 UR - https://global-sci.org/intro/article_detail/jnma/24243.html KW - Weighted variable exponent Lebesgue-Sobolev spaces, degenerated $(p(.), q(.))$-Biharmonic operator, Navier boundary problem. AB -
In this paper, we are interested in some results of the existence of multiple solutions for Navier boundary value problem involving degenerated $(p(.), q(.))$-Biharmonic and $(p(.), q(.))$-Laplacian operators. Our approach is based on variational method and critical point theory.