TY - JOUR T1 - Square-Mean Pseudo $S$-Asymptotically $(ω, c)$-Periodic Mild Solutions to Some Stochastic Fractional Evolution Systems AU - Moustapha Mbaye , Mamadou AU - Diop , Amadou AU - Chang , Yong-Kui JO - Journal of Nonlinear Modeling and Analysis VL - 1 SP - 241 EP - 267 PY - 2025 DA - 2025/02 SN - 7 DO - http://doi.org/10.12150/jnma.2025.241 UR - https://global-sci.org/intro/article_detail/jnma/23825.html KW - Stochastic processes, stochastic evolution equations, Brownian motion, pseudo S-asymptotically $(ω, c)$-periodic functions. AB -
In this paper, we introduce the concept of square-mean pseudo $S$-asymptotically $(ω,c)$-periodic for stochastic processes and establish some composition and convolution theorems for such stochastic processes. In addition, we investigate the existence and uniqueness of square-mean pseudo $S$-asymptotically $(ω,c)$-periodic mild solutions to some stochastic fractional integrodifferential equations. We illustrate our main results with an application to stochastic Weyl fractional integrodifferential equations.